SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Analyticity of Nekrasov Partition Functions

Giovanni Felder, Martin Müller-Lennert

15/9/17 Published in : arXiv:1709.05232

We prove that the K-theoretic Nekrasov instanton partition functions have a finite radius of convergence in the instanton counting parameter and are holomorphic functions of the Coulomb parameters in a suitable domain. We discuss the implications for the AGT correspondence and the analyticity of the norm of Gaiotto states for the deformed Virasoro algebra. The proof is based on random matrix techniques and relies on an integral representation of the partition function, due to Nekrasov, which we also prove.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Spin Hall insulators beyond the Helical Luttinger model

Stringy \mathcal{N}=(2,2) holography for AdS{_3}

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved