SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

An AdS/EFT correspondence at large charge

Orestis Loukas, Domenico Orlando, Susanne Reffert, Debajyoti Sarkar

11/4/18 Published in : arXiv:1804.04151

Considering theories in sectors of large global charge Q results in a semiclassical effective field theory (EFT) description for some strongly-coupled conformal field theories (CFTs) with continuous global symmetries. Hence, when studying dualities at large charge, we can have control over the strongly coupled side of the duality and gain perturbative access to both dual pairs. In this work we discuss the AdS/CFT correspondence in the regime Q \gg C_T \gg 1 where both the EFT and gravity descriptions are valid and stable (CT being the central charge). We present the observation that the ground state energy as a function of the Abelian charge Q for a simple EFT in some three-dimensional CFT coincides with the expression for the mass of an anti-de Sitter-Reissner-Nordstr\"om black hole as a function of its charge. This observation allows us to introduce a dictionary relating CFT, EFT and holographic descriptions. We also find agreement for the higher-derivative corrections on both sides, suggesting a large-CT expansion on the EFT side.

Entire article

Phase I & II research project(s)

  • String Theory

Crepant resolution and the holomorphic anomaly equation for C^3/Z_3

Quantum curves as quantum distributions

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved