SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • News
  • Events
  • Online Events
  • Videos
  • Newsletters
  • Press Coverage
  • Perspectives Journal
  • Interviews

On eternal imbalance

27 Jul 2021

ETHZ News article on the recently published work from our member Nicolo Defenu (ETHZ, GM. Graf's group).

Some physical systems, especially in the quantum world, do not reach a stable equilibrium even after a long time. An ETH researcher has now found an elegant explanation for this phenomenon.If you put a bottle of beer in a big bathtub full of ice-​cold water, it won’t be long before you can enjoy a cold beer. Physicists discovered how this works more than a hundred years ago. Heat exchange takes place through the glass bottle until equilibrium is reached. However, there are other systems, especially quantum systems, that don’t find equilibrium. They resemble a hypothetical beer bottle in a bath of ice-​cold water that doesn’t always and inevitably cool to the temperature of the bath water, but rather reaches different states depending on its own initial temperature. Until now, such systems have puzzled physicists. But Nicolò Defenu, a postdoc at the ETH Zurich Institute for Theoretical Physics, has now found a way to elegantly explain this behaviour.

 

Read full article

 

 

 

 

Image:  ETHZ News article

 

Phase I & II research project(s)

  • Quantum Systems

SwissMAP Innovator Prize 2021

ICMP Human Rights Session

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved