The Boltzmann Equation

Chiara Saffirio

Geneva, YRS 2021

The Boltzmann Equation

Boltzmann (1872) and Maxwell (1867)
attempt at a realistic description of rarefied gases

The Boltzmann Equation

Boltzmann (1872) and Maxwell (1867)
attempt at a realistic description of rarefied gases

Boltzmann equation

$$
\left(\partial_{t}+v \cdot \nabla_{X}\right) f(t, x, v)=Q(f, f)(t, x, v)
$$

The Boltzmann Equation

Boltzmann (1872) and Maxwell (1867)
attempt at a realistic description of rarefied gases

Boltzmann equation

$$
\left(\partial_{t}+v \cdot \nabla_{x}\right) f(t, x, v)=Q(f, f)(t, x, v)
$$

$f: \mathbb{R} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}^{+}$probability density

The Boltzmann Equation

Boltzmann (1872) and Maxwell (1867)
attempt at a realistic description of rarefied gases
Boltzmann equation

$$
\left(\partial_{t}+v \cdot \nabla_{x}\right) f(t, x, v)=Q(f, f)(t, x, v)
$$

$f: \mathbb{R} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}^{+}$probability density

$$
\begin{aligned}
& Q(f, f)=\int_{\mathbb{R}^{3}} d v_{*} \int_{S^{2}} d \omega B\left(\omega, v-v_{*}\right) \\
& \times\left\{f\left(t, x, v_{*}^{\prime}\right) f\left(t, x, v^{\prime}\right)-f\left(t, x, v_{*}\right) f(t, x, v)\right\}
\end{aligned}
$$

Conservation laws and H -Theorem

- Mass, Momentum, Energy

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(v) f(t, x, v) d x d v=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(v) f_{0}(x, v) d x d v
$$

f solution to the Boltzmann eq. with initial datum f_{0} and $\varphi(v)=1, v_{i}, v^{2}$.

Conservation laws and H -Theorem

- Mass, Momentum, Energy

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(v) f(t, x, v) d x d v=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(v) f_{0}(x, v) d x d v
$$

f solution to the Boltzmann eq. with initial datum f_{0} and $\varphi(v)=1, v_{i}, v^{2}$.

- Entropy

$$
H(t):=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} f(t, x, v) \ln f(t, x, v) d x d v
$$

Conservation laws and H -Theorem

- Mass, Momentum, Energy

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(v) f(t, x, v) d x d v=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(v) f_{0}(x, v) d x d v
$$

f solution to the Boltzmann eq. with initial datum f_{0} and $\varphi(v)=1, v_{i}, v^{2}$.

- Entropy

$$
H(t):=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} f(t, x, v) \ln f(t, x, v) d x d v
$$

Theorem (H Theorem, Boltzmann '72)

If $f(t)$ is a regular enough solution to the Boltzmann equation, then

$$
H(t) \leq H(0)
$$

PDE viewpoint: well-posedness

- Homogeneous setting: many results since Carleman 1933

PDE viewpoint: well-posedness

- Homogeneous setting: many results since Carleman 1933
- Non-homogenous setting:
- local in time (several results)
- global in time for small data / close to equilibrium data (several results since Guo 2004)
- renormalized solutions (Di Perna and Lions 1989)

PDE viewpoint: well-posedness

- Homogeneous setting: many results since Carleman 1933
- Non-homogenous setting:
- local in time (several results)
- global in time for small data / close to equilibrium data (several results since Guo 2004)
- renormalized solutions (Di Perna and Lions 1989)

Global well-posedness?

PDE viewpoint: well-posedness

- Homogeneous setting: many results since Carleman 1933
- Non-homogenous setting:
- local in time (several results)
- global in time for small data / close to equilibrium data (several results since Guo 2004)
- renormalized solutions (Di Perna and Lions 1989)

Global well-posedness?
On the one hand:

$$
\begin{aligned}
\left(\partial_{t}\right. & \left.+v \cdot \nabla_{x}\right) f(t, x, v) \\
& =\int_{\mathbb{R}^{3}} d v_{*} \int_{S^{2}} d \omega B\left(\omega, v-v_{*}\right)\left\{f\left(t, x, v_{*}^{\prime}\right) f\left(t, x, v^{\prime}\right)-f\left(t, x, v_{*}\right) f(t, x, v)\right\}
\end{aligned}
$$

looks like

$$
\partial_{t} f(t) \sim f(t)^{2} \quad \Longrightarrow \quad \text { only local in time! }
$$

PDE viewpoint: well-posedness

- Homogeneous setting: many results since Carleman 1933
- Non-homogenous setting:
- local in time (several results)
- global in time for small data / close to equilibrium data (several results since Guo 2004)
- renormalized solutions (Di Perna and Lions 1989)

Global well-posedness?
On the other hand:

$$
\begin{aligned}
&\left(\partial_{t}\right.\left.+v \cdot \nabla_{x}\right) f(t, x, v) \\
& \quad=\int_{\mathbb{R}^{3}} d v_{*} \int_{S^{2}} d \omega B\left(\omega, v-v_{*}\right)\left\{f\left(t, x, v_{*}^{\prime}\right) f\left(t, x, v^{\prime}\right)-f\left(t, x, v_{*}\right) f(t, x, v)\right\}
\end{aligned}
$$

there might be cancellations!

Statistical mechanics viewpoint: derivation

Classical particles

```
micro-scale
```

Newton's law $\left(N \simeq 10^{23}\right) \quad \Longrightarrow \quad$ Boltzmann's equation scaling limit

$\Longrightarrow \quad$| effective theory |
| :--- |
| collective description |

Statistical mechanics viewpoint: derivation

Newton: time reversible dynamics

$$
\left\{\begin{array}{l}
\frac{d}{d t} x_{i}(t)=v_{i}(t) \\
\frac{d}{d t} v_{i}(t)=0 \\
i=1, \ldots, N
\end{array}\right.
$$

Statistical mechanics viewpoint: derivation

Newton: time reversible dynamics

$$
\left\{\begin{array}{l}
\frac{d}{d t} x_{i}(t)=v_{i}(t) \\
\frac{d}{d t} v_{i}(t)=0 \\
i=1, \ldots, N
\end{array}\right.
$$

boundary conditions

Liouville equation:

$$
\partial_{t} f_{N}+\sum_{i=1}^{N} v_{i} \cdot \nabla_{x_{i}} f_{N}=0 \quad+\quad \text { b.c. }
$$

Statistical mechanics viewpoint: derivation

Newton: time reversible dynamics

$$
\left\{\begin{array}{l}
\frac{d}{d t} x_{i}(t)=v_{i}(t) \\
\frac{d}{d t} v_{i}(t)=0 \\
i=1, \ldots, N
\end{array}\right.
$$

$+\quad$ boundary conditions

Liouville equation:

$$
\partial_{t} f_{N}+\sum_{i=1}^{N} v_{i} \cdot \nabla_{\chi_{i}} f_{N}=0 \quad+\quad \text { b.c. }
$$

j-particle marginal:

$$
f_{N}^{(j)}\left(t, x_{1}, v_{1}, \ldots, x_{j}, v_{j}\right)=\int f_{N}\left(t, x_{1}, v_{1}, \ldots, x_{N}, v_{N}\right) d x_{j+1} d v_{j+1} \ldots d x_{N} d v_{N}
$$

Statistical mechanics viewpoint: derivation

The Boltzmann-Grad limit: N particles of radius $\varepsilon, N \rightarrow \infty$ and $\varepsilon \rightarrow 0$

Statistical mechanics viewpoint: derivation

The Boltzmann-Grad limit: N particles of radius $\varepsilon, N \rightarrow \infty$ and $\varepsilon \rightarrow 0$

Statistical mechanics viewpoint: derivation

The Boltzmann-Grad limit: N particles of radius ε, low density regime

Statistical mechanics viewpoint: derivation

The Boltzmann-Grad limit: $N \rightarrow \infty$ with the constraint $N \varepsilon^{d-1}=O(1)$

Statistical mechanics viewpoint: derivation

$$
\partial_{t} f_{N}+\sum_{i=1}^{N} v_{i} \cdot \nabla_{x_{i}} f_{N}=0 \quad+\quad \text { b.c. }
$$

and consider the first marginal $f_{N}^{(1)}$.

Statistical mechanics viewpoint: derivation

$$
\begin{aligned}
\left(\partial_{t}+v \cdot \nabla_{x}\right) f_{N}^{(1)} & (t, x, v)=(N-1) \varepsilon^{2} \int_{\mathbb{R}^{3}} \int_{S^{2}} B\left(\omega, v-v_{*}\right) \\
& \times\left\{f_{N}^{(2)}\left(t, x-\varepsilon \omega, v_{*}^{\prime}, x, v^{\prime}\right)-f_{N}^{(2)}\left(t, x+\varepsilon \omega, v_{*}, x, v\right)\right\} d \omega d v_{*}
\end{aligned}
$$

to be compared with

$$
\begin{aligned}
\left(\partial_{t}+v \cdot \nabla_{x}\right) f(t, x, v) & =\int_{\mathbb{R}^{3}} \int_{S^{2}} B\left(\omega, v-v_{*}\right) \\
& \times\left\{f\left(t, x, v_{*}^{\prime}\right) f\left(t, x, v^{\prime}\right)-f\left(t, x, v_{*}\right) f(t, x, v)\right\} d \omega d v_{*}
\end{aligned}
$$

Propagation of chaos

$$
f_{N}^{(2)}(0) \sim f_{0}^{\otimes 2} \quad \Longrightarrow \quad f_{N}^{(2)}(t) \sim f(t)^{\otimes 2}
$$

where f is a solution of the Boltzmann equation with initial datum f_{0}.

Statistical mechanics viewpoint: derivation

Accurate study of pathological configurations

State of the art and major open problems

- Lanford (1975): hard spheres, short times
- Gallagher, Saint-Raymond, Texier (2013): quantitative analysis

State of the art and major open problems

- Lanford (1975): hard spheres, short times
- Gallagher, Saint-Raymond, Texier (2013): quantitative analysis

Class of interactions:

* Short range potentials:

Gallagher, Saint-Raymond, Sexier (2013), Pulvirenti, C.S., Simonella (2014)

* Triple interactions: Ampatzoglou, Pavlovic $(2019,2020)$
* Long range potentials:

State of the art and major open problems

- Lanford (1975): hard spheres, short times
- Gallagher, Saint-Raymond, Texier (2013): quantitative analysis

Class of interactions:

* Short range potentials:

Gallagher, Saint-Raymond, Texier (2013), Pulvirenti, C.S., Simonella (2014)

* Triple interactions: Ampatzoglou, Pavlovic $(2019,2020)$
* Long range potentials: ?

Time of validity:

* Near the vacuum: Illner, Pulvirenti (1986)
* Linear and linearized setting:

Bodineau, Gallagher, Saint-Raymond (2016, 2017), + Simonella (2020)

* Nonlinear setting: ? (related to the global existence for the PDE)

State of the art and major open problems

...and many other open problems
(boundaries, boundary layers, molecular interactions, ...)

Plenty of work to be done!

