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Transport in condensed matter

• Endless source of beautiful mathematical problems, combining different
mathematical methods (analysis, probability, geometry...)

• Loosely speaking: understand how an electron gas, formed by a large
number of particles, responds to external perturbations (e.g.: external
electric field, variation of chemical potential, etc).

• The motion of the individual charge carriers is described by the
Schrödinger equation. For one particle with wave function ψ ∈ L2(Rd):

i∂tψt = Hψt , H = H∗= Hamiltonian, ψ0 = ψ .

We will be interested in systems formed by ∞-many particles. In some
cases, quantum mechanical effects remain visible at a macroscopic scale.
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The Hall effect - Edwin Hall 1879

• Setting: Ultrathin materials exposed to transverse magnetic field B and
a weak in-plane electric field E.

E

J2B

J1

• Linear response (weak E):

J1 = σ11E , J2 = σ21E

σ11 = longitudinal conductivity, σ21 = −σ12 = Hall conductivity.

From the laws of classical electrodynamics:

σ21 =
e2

h
ν , ν =

ρ

|e| Bhc
(ρ = density of charge carriers)
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The Hall effect

• Classical prediction: linear behavior of transverse conductivity

σ21

ρ

Marcello Porta Quantum Hall effect July 29, 2021 3 / 9



The Hall effect

• von Klitzing ’80. Experiment on GaAs-heterostructures (insulators).

Large magnetic field B and small temperature T .

σ21

σ11

ρ
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The Hall effect

• von Klitzing ’80. Experiment on GaAs-heterostructures (insulators).

Large magnetic field B and small temperature T (∼ 0.1K).

• Integer Quantum Hall effect: σ21 is quantized, with 10−9 precision!

σ21 =
e2

h
n , n ∈ Z .

Purely quantum phenomenon. First example of topological insulator.
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Theory: setting

• Electron gas on an infinite 2d lattice as a model for a crystal, in the
tight-binding approximation. E.g.: Z2.

B

V

∆

where:

∆ : lattice hopping (e.g.: lattice Laplacian);

V : external potential (periodic potential, impurities...)

B: constant magnetic field.
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Theory: setting

• Example of single-particle Hamiltonian, on `2(Z2):

H = −∆A + V , (V ψ)(x) = V (x)ψ(x)

where A is a vector potential generating the magnetic field:

∆A(x; y) = ∆(x; y)ei
∫
x→y

d`·A(`) ,

∫
∂(plaquette)

d` ·A(`) = Flux(B)

• Ground state of many, noninteracting fermions: “fill the Fermi sea”, up
to the Fermi energy µ. Averages of observables, O = O∗:

〈O〉µ := Tr`2(Z2)OPµ , Pµ = χ(H ≤ µ) = Fermi projector.

• Important assumption: insulating behavior,

|〈δx, Pµδy〉| ≤ Ce−c|x−y| .

True if µ /∈ σ(H) (spectral gap), or if µ ∈ mobility gap (later).
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Linear response

• Time-dependent perturbation, for t ≤ 0 (η ≥ 0 small):

A(`)→ A(`) + a(ηt) , ∂ta(ηt) =: E(t) , a(−∞) = 0 ,

nontrivial time evolution:

i∂tP (t) = [H(t) , P (t)] , P (−∞) = Pµ .

• The final goal is to understand the E-dependence of:

J = lim
L→∞

1

|ΛL|
Trχ(x ∈ ΛL)JP (0)

with J = i[H,X] = current operator, as E → 0.

• Linear response: expand the state in E,

J = σE + o(E) , E ≡ E(0) ,

where σ = conductivity matrix, given by Kubo formula:

σij = lim
L→∞

i

|ΛL|
Trχ(x ∈ ΛL)Pµ[[Pµ, Xi], [Pµ, Xj ]] .
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Gapped systems

• Let H on `2(Z2;CM ), translation invariant: H(x; y) ≡ H(x− y) .

Bloch Hamiltonian: Ĥ(k), with k ∈ T2. Eigenvalue equation:

Ĥ(k)ϕi(k) = εi(k)ϕi(k) , i = 1, . . . ,M,

where εi(k) define the energy bands. Suppose µ is in a spectral gap.
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• Let Pµ =
⊕

k∈T2 P̂ (k) and suppose P̂ (k) = |ϕ1(k)〉〈ϕ1(k)|. Then:

σ12 =

∫
T2

dk

(2π)2
~∇× 〈ϕ1(k), i~∇kϕ1(k)〉 ∈ 1

2π
Z

• More generally, σ12 = Chern number of Bloch bundle,

EB = {(k, u) ∈ T2×CM | u ∈ Ran P̂ (k)} [TKNN; Avron, Seiler, Simon]
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Plateaux

• In the previous example we crucially used that µ lies in a spectral gap.

E.g.: ϕ(k) eigenstate of Ĥ(k) corresponding to the lowest eigenvalue.

• This setting cannot explain the emergence of plateaux! Varying µ in the
spectral gap does not change the density of charge carriers.

µ R
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Plateaux

• In the previous example we crucially used that µ lies in a spectral gap.

E.g.: ϕ(k) eigenstate of Ĥ(k) corresponding to the lowest eigenvalue.

• Strong disorder: V (x) = λωx, |λ| � 1, {ωx} i.i.d. ⇒ Anderson loc.

For µ in a mobility gap: σ12 is integer-valued, and continuous in µ!

µ R

[Bellissard, van Elst, Schulz-Baldes; AS2; Aizenman, Graf]
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Conclusion and open questions

• The precise explanation of the IQHE is a major achievement of
mathematical physics.

• It pioneered the study of topological insulators and the notion of
topological phase of matter.

• Many-body interactions?

In the last years, the stability of the IQHE against weak many-body
interactions has been rigorously understood.

• Two major open questions:

Existence of plateaux for many-body quantum systems (many-body
localization?)
Strong interactions should have a dramatic consequence on
transport. Fractional quantum Hall effect:

σ12 ∈
1

2π
Q .

Proof from a microscopic model?
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