Strong positivity for the skein algebras of the 4-punctured sphere and of the 1-punctured torus

Pierrick Bousseau

ETH-ITS Zurich
7th SwissMAP General Meeting
September 7, 2020

Introduction

Topics:

- Low-dimensional topology.
- Enumerative algebraic geometry.

Introduction

Topics:

- Low-dimensional topology.
- Enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.

Introduction

Topics:

- Low-dimensional topology.
- Enumerative algebraic geometry.

Topics:

- Low-dimensional topology.
- Enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.
- Low-dimensional topology: knots, links...

Introduction

- Enumerative algebraic geometry: 27 lines on a cubic surface (Cayley, Salmon, 1849)

- String theory realizations of supersymmetric gauge theories

Introduction

- Result in low-dimensional topological: positive bases for Kauffman bracket skein algebras of the 4-punctured torus and the 1-punctured torus.

Introduction

- Result in low-dimensional topological: positive bases for Kauffman bracket skein algebras of the 4 -punctured torus and the 1-punctured torus.
- Proof based on the enumerative geometry of holomorphic curves in complex cubic surfaces.

Introduction

- Result in low-dimensional topological: positive bases for Kauffman bracket skein algebras of the 4-punctured torus and the 1-punctured torus.
- Proof based on the enumerative geometry of holomorphic curves in complex cubic surfaces.
- Proof motivated by the existence of dual realizations in string/M-theory of the $\mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.
- Framing of a link: a choice of nowhere vanishing section of its normal bundle.
- The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold \mathbb{M} is the $\mathbb{Z}\left[A^{ \pm}\right]$-module generated by isotopy classes of framed links in \mathbb{M} satisfying the skein relations

$$
\left.\lambda=A \backsim+A^{-1}\right\rangle\left\langle\text { and } L \cup \bigcirc=-\left(A^{2}+A^{-2}\right) L\right.
$$

Skein modules of 3-manifolds

- The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold \mathbb{M} is the $\mathbb{Z}\left[A^{ \pm}\right]$-module generated by isotopy classes of framed links in \mathbb{M} satisfying the skein relations

$$
\left.\lambda=A \backsim+A^{-1}\right\rangle\left\langle\text { and } L \cup \bigcirc=-\left(A^{2}+A^{-2}\right) L\right.
$$

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.

Skein modules of 3-manifolds

- The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold \mathbb{M} is the $\mathbb{Z}\left[A^{ \pm}\right]$-module generated by isotopy classes of framed links in \mathbb{M} satisfying the skein relations

$$
\left.\lambda=A \backsim+A^{-1}\right\rangle\left\langle\text { and } L \cup \bigcirc=-\left(A^{2}+A^{-2}\right) L\right.
$$

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.
- The skein module of $\mathbb{M}=\mathbb{R}^{3}$ is $\mathbb{Z}\left[A^{ \pm}\right]$(generated by the empty link). The class of a framed link $L \subset \mathbb{R}^{3}$ in $\mathbb{Z}\left[A^{ \pm}\right]$is the Kauffman bracket polynomial of L (equivalent to the Jones polynomial).

Skein algebras of surfaces

- Given an oriented 2-manifold \mathbb{S}, one can define a natural algebra structure on the Kauffmann bracket skein module of the 3-manifold $\mathbb{M}:=\mathbb{S} \times(-1,1)$: given two framed links L_{1} and L_{2} in $\mathbb{S} \times(-1,1)$, and viewing the interval $(-1,1)$ as a vertical direction, the product $L_{1} L_{2}$ is defined by placing L_{1} on top of L_{2}.

Skein algebras of surfaces

- Given an oriented 2-manifold \mathbb{S}, one can define a natural algebra structure on the Kauffmann bracket skein module of the 3-manifold $\mathbb{M}:=\mathbb{S} \times(-1,1)$: given two framed links L_{1} and L_{2} in $\mathbb{S} \times(-1,1)$, and viewing the interval $(-1,1)$ as a vertical direction, the product $L_{1} L_{2}$ is defined by placing L_{1} on top of L_{2}.
- We denote by $\mathrm{Sk}_{A}(\mathbb{S})$ the resulting associative $\mathbb{Z}\left[A^{ \pm}\right]$-algebra with unit. The skein algebra $\mathrm{Sk}_{A}(\mathbb{S})$ is in general non-commutative.

Skein algebras of surfaces

- We consider the case where \mathbb{S} is the complement $\mathbb{S}_{g, \ell}$ of a finite number ℓ of points in a compact oriented 2-manifold of genus g.

Skein algebras of surfaces

- We consider the case where \mathbb{S} is the complement $\mathbb{S}_{g, \ell}$ of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on $\mathbb{S}_{g, \ell}$ is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of $\mathbb{S}_{g, \ell}$ such that none of them bounds a disc in $\mathbb{S}_{g, \ell}$. Identifying $\mathbb{S}_{g, \ell}$ with $\mathbb{S}_{g, \ell} \times\{0\} \subset \mathbb{S}_{g, \ell} \times(-1,1)$, a multicurve on $\mathbb{S}_{g, \ell}$ endowed with the vertical framing naturally defined a framed link in $\mathbb{S}_{g, \ell} \times(-1,1)$.

Skein algebras of surfaces

- We consider the case where \mathbb{S} is the complement $\mathbb{S}_{g, \ell}$ of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on $\mathbb{S}_{g, \ell}$ is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of $\mathbb{S}_{g, \ell}$ such that none of them bounds a disc in $\mathbb{S}_{g, \ell}$. Identifying $\mathbb{S}_{g, \ell}$ with $\mathbb{S}_{g, \ell} \times\{0\} \subset \mathbb{S}_{g, \ell} \times(-1,1)$, a multicurve on $\mathbb{S}_{g, \ell}$ endowed with the vertical framing naturally defined a framed link in $\mathbb{S}_{g, \ell} \times(-1,1)$.

Theorem (Przytycki)

Isotopy classes of multicurves form a basis of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ as $\mathbb{Z}\left[A^{ \pm}\right]$-module.

Example: closed torus

- On the closed torus $\mathbb{S}_{1,0}$, isotopy classes of multicurves are in biiection with
- For every $p=(m, n) \in B(\mathbb{Z})$, denote by γ_{p} the corresponding isotopy class of multicurves

Example: closed torus

- On the closed torus $\mathbb{S}_{1,0}$, isotopy classes of multicurves are in bijection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

Example: closed torus

- On the closed torus $\mathbb{S}_{1,0}$, isotopy classes of multicurves are in bijection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

- For every $p=(m, n) \in B(\mathbb{Z})$, denote by γ_{p} the corresponding isotopy class of multicurves.

Example: closed torus

- On the closed torus $\mathbb{S}_{1,0}$, isotopy classes of multicurves are in bijection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

- For every $p=(m, n) \in B(\mathbb{Z})$, denote by γ_{p} the corresponding isotopy class of multicurves.
- γ_{p} has $\operatorname{gcd}(m, n)$ connected components.

Example: closed torus

- On the closed torus $\mathbb{S}_{1,0}$, isotopy classes of multicurves are in bijection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

- For every $p=(m, n) \in B(\mathbb{Z})$, denote by γ_{p} the corresponding isotopy class of multicurves.
- γ_{p} has $\operatorname{gcd}(m, n)$ connected components.
- $\left\{\gamma_{p}\right\}_{p \in B(\mathbb{Z})}$ is a $\mathbb{Z}\left[A^{ \pm}\right]$-linear basis of the skein algebra $\operatorname{Sk}_{A}\left(\mathbb{S}_{0,1}\right)$.

Structure constants and positive bases

- The structure constants $C_{j, k}^{\prime} \in R$ of a basis $\left\{e_{j}\right\}_{j \in J}$ of an algebra \mathcal{A} over a ring R are defined by

$$
e_{j} e_{k}=\sum_{I \in J} C_{j, k}^{l} e_{l}
$$

Structure constants and positive bases

- The structure constants $C_{j, k}^{\prime} \in R$ of a basis $\left\{e_{j}\right\}_{j \in J}$ of an algebra \mathcal{A} over a ring R are defined by

$$
e_{j} e_{k}=\sum_{l \in J} C_{j, k}^{l} e_{l}
$$

- For the skein algebra, $R=\mathbb{Z}\left[A^{ \pm}\right]$.

Structure constants and positive bases

- The structure constants $C_{j, k}^{l} \in R$ of a basis $\left\{e_{j}\right\}_{j \in J}$ of an algebra \mathcal{A} over a ring R are defined by

$$
e_{j} e_{k}=\sum_{l \in J} C_{j, k}^{l} e_{l}
$$

- For the skein algebra, $R=\mathbb{Z}\left[A^{ \pm}\right]$.

Definition

A basis $\left\{e_{j}\right\}_{j \in J}$ of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right.$ is called positive if its structure constants belong to $\mathbb{Z}_{\geq 0}\left[A^{ \pm}\right]$, i.e. are Laurent polynomials in A with positive coefficients.

Structure constants and positive bases

- The structure constants $C_{j, k}^{l} \in R$ of a basis $\left\{e_{j}\right\}_{j \in J}$ of an algebra \mathcal{A} over a ring R are defined by

$$
e_{j} e_{k}=\sum_{l \in J} C_{j, k}^{l} e_{l}
$$

- For the skein algebra, $R=\mathbb{Z}\left[A^{ \pm}\right]$.

Definition

A basis $\left\{e_{j}\right\}_{j \in J}$ of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right.$ is called positive if its structure constants belong to $\mathbb{Z}_{\geq 0}\left[A^{ \pm}\right]$, i.e. are Laurent polynomials in A with positive coefficients.

- Question: is the basis of multicurves positive?

Example: closed torus

- One crossing to resolve:
- Two crossings to resolve:

Example: closed torus

- One crossing to resolve:

$$
\gamma_{(1,0)} \gamma_{(0,1)}=A \gamma_{1,1}+A^{-1} \gamma_{(-1,1)}
$$

- One crossing to resolve:

$$
\gamma_{(1,0)} \gamma_{(0,1)}=A \gamma_{1,1}+A^{-1} \gamma_{(-1,1)}
$$

- Two crossings to resolve:

$$
\gamma_{(0,1)} \gamma_{(2,1)}=A^{-2} \gamma_{(2,2)}+A^{2} \gamma_{(2,0)}-2 A^{-2}-2 A^{2}
$$

- One crossing to resolve:

$$
\gamma_{(1,0)} \gamma_{(0,1)}=A \gamma_{1,1}+A^{-1} \gamma_{(-1,1)}
$$

- Two crossings to resolve:

$$
\gamma_{(0,1)} \gamma_{(2,1)}=A^{-2} \gamma_{(2,2)}+A^{2} \gamma_{(2,0)}-2 A^{-2}-2 A^{2}
$$

- Conclusion: the basis of multicurves is not positive in general.

The bracelets basis

$$
\mathbf{T}(\gamma):=T_{n_{1}}\left(\gamma_{1}\right) \cdots T_{n_{r}}\left(\gamma_{r}\right)
$$

The bracelets basis

- Let $T_{n}(x)$ be the Chebyshev polynomials defined by

$$
T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=x^{2}-2
$$

and for every $n \geq 2$,

$$
T_{n+1}(x)=x T_{n}(x)-T_{n-1}(x) .
$$

Writing $x=\lambda+\lambda^{-1}$, we have $T_{n}(x)=\lambda^{n}+\lambda^{-n}$ for every $n \geq 1$.

- Let $T_{n}(x)$ be the Chebyshev polynomials defined by

$$
T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=x^{2}-2
$$

and for every $n \geq 2$,

$$
T_{n+1}(x)=x T_{n}(x)-T_{n-1}(x) .
$$

Writing $x=\lambda+\lambda^{-1}$, we have $T_{n}(x)=\lambda^{n}+\lambda^{-n}$ for every $n \geq 1$.

- Given an isotopy class γ of multicurve on $\mathbb{S}_{g, \ell}$, one can uniquely write γ in $\operatorname{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ as $\gamma=\gamma_{1}^{n_{1}} \cdots \gamma_{r}^{n_{r}}$ where $\gamma_{1}, \cdots, \gamma_{r}$ are all distinct isotopy classes of connected multicurves and $n_{j} \in \mathbb{Z}_{>0}$, and we define

$$
\mathbf{T}(\gamma):=T_{n_{1}}\left(\gamma_{1}\right) \cdots T_{n_{r}}\left(\gamma_{r}\right)
$$

- Let $T_{n}(x)$ be the Chebyshev polynomials defined by

$$
T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=x^{2}-2
$$

and for every $n \geq 2$,

$$
T_{n+1}(x)=x T_{n}(x)-T_{n-1}(x) .
$$

Writing $x=\lambda+\lambda^{-1}$, we have $T_{n}(x)=\lambda^{n}+\lambda^{-n}$ for every $n \geq 1$.

- Given an isotopy class γ of multicurve on $\mathbb{S}_{g, \ell}$, one can uniquely write γ in $\operatorname{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ as $\gamma=\gamma_{1}^{n_{1}} \cdots \gamma_{r}^{n_{r}}$ where $\gamma_{1}, \cdots, \gamma_{r}$ are all distinct isotopy classes of connected multicurves and $n_{j} \in \mathbb{Z}_{>0}$, and we define

$$
\mathbf{T}(\gamma):=T_{n_{1}}\left(\gamma_{1}\right) \cdots T_{n_{r}}\left(\gamma_{r}\right) .
$$

- $\{\mathbf{T}(\gamma)\}_{\gamma}$: bracelets basis of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$.

Example: closed torus

- As $T_{1}(x)=x$ and $T_{2}(x)=x^{2}-2$,

$$
\begin{gathered}
\mathbf{T}\left(\gamma_{(0,1)}\right) \mathbf{T}\left(\gamma_{(2,1)}\right)=T_{1}\left(\gamma_{(0,1)}\right) T_{1}\left(\gamma_{(1,0)}\right)=\gamma_{(0,1)} \gamma_{(1,0)} \\
=A^{-2} \gamma_{(2,2)}+A^{2} \gamma_{(2,0)}-2 A^{-2}-2 A^{2}=A^{-2}\left(\gamma_{(2,2)}-2\right)+A^{2}\left(\gamma_{(2,0)}-2\right) \\
=A^{-2} T_{2}\left(\gamma_{(1,1)}\right)+A^{2} T_{2}\left(\gamma_{(1,0)}\right)=A^{-2} \mathbf{T}\left(\gamma_{(2,2)}\right)+A^{2} \mathbf{T}\left(\gamma_{(2,0)}\right)
\end{gathered}
$$

Example: closed torus

- As $T_{1}(x)=x$ and $T_{2}(x)=x^{2}-2$,

$$
\begin{gathered}
\mathbf{T}\left(\gamma_{(0,1)}\right) \mathbf{T}\left(\gamma_{(2,1)}\right)=T_{1}\left(\gamma_{(0,1)}\right) T_{1}\left(\gamma_{(1,0)}\right)=\gamma_{(0,1)} \gamma_{(1,0)} \\
=A^{-2} \gamma_{(2,2)}+A^{2} \gamma_{(2,0)}-2 A^{-2}-2 A^{2}=A^{-2}\left(\gamma_{(2,2)}-2\right)+A^{2}\left(\gamma_{(2,0)}-2\right) \\
=A^{-2} T_{2}\left(\gamma_{(1,1)}\right)+A^{2} T_{2}\left(\gamma_{(1,0)}\right)=A^{-2} \mathbf{T}\left(\gamma_{(2,2)}\right)+A^{2} \mathbf{T}\left(\gamma_{(2,0)}\right)
\end{gathered}
$$

- Positive!

Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)

For every g and ℓ, the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ is positive.

Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)

For every g and ℓ, the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ is positive.

Theorem (Dylan Thurston, 2013)

For every g and ℓ, after setting $A=1$, the structure constants of the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ are non-negative.

Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)

For every g and ℓ, the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g}, \ell\right)$ is positive.

Theorem (Dylan Thurston, 2013)

For every g and ℓ, after setting $A=1$, the structure constants of the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ are non-negative.

Theorem (Frohman, Gelca, 2000)

The bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\operatorname{Sk}_{A}\left(\mathbb{S}_{1,0}\right)$ of the closed torus $\mathbb{S}_{1,0}$ is positive. In fact, for every $p_{1}, p_{2} \in B(\mathbb{Z})$,

$$
\mathbf{T}\left(\gamma_{p_{1}}\right) \mathbf{T}\left(\gamma_{p_{2}}\right)=A^{\operatorname{det}\left(p_{1}, p_{2}\right)} \mathbf{T}\left(\gamma_{p_{1}+p_{2}}\right)+A^{-\operatorname{det}\left(p_{1}, p_{2}\right)} \mathbf{T}\left(\gamma_{p_{1}-p_{2}}\right) .
$$

Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)

For every g and ℓ, the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g}, \ell\right)$ is positive.

Theorem (Dylan Thurston, 2013)

For every g and ℓ, after setting $A=1$, the structure constants of the bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ are non-negative.

Theorem (Frohman, Gelca, 2000)

The bracelets basis $\{\mathbf{T}(\gamma)\}_{\gamma}$ of $\mathrm{Sk}_{A}\left(\mathbb{S}_{1,0}\right)$ of the closed torus $\mathbb{S}_{1,0}$ is positive. In fact, for every $p_{1}, p_{2} \in B(\mathbb{Z})$,

$$
\mathbf{T}\left(\gamma_{p_{1}}\right) \mathbf{T}\left(\gamma_{p_{2}}\right)=A^{\operatorname{det}\left(p_{1}, p_{2}\right)} \mathbf{T}\left(\gamma_{p_{1}+p_{2}}\right)+A^{-\operatorname{det}\left(p_{1}, p_{2}\right)} \mathbf{T}\left(\gamma_{p_{1}-p_{2}}\right) .
$$

The positivity of the bracelets basis is obvious for $\mathbb{S}_{0,0}, \mathbb{S}_{0,1}, \mathbb{S}_{0,2}, \mathbb{S}_{0,3}$.

Main result

Theorem (B, 2020)

The bracelets bases $\{\mathbf{T}(\gamma)\}_{\gamma}$ of the skein algebras $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ and $\mathrm{Sk}_{A}\left(\mathbb{S}_{1,1}\right)$ of the 4 -punctured sphere and the 1-punctured torus are positive.

Unlike the case of the closd torus $\mathbb{S}_{1,0}$, there does not seem to exist a simple closed formula for the structure constants of the bracelets basis of

Main result

Theorem (B, 2020)

The bracelets bases $\{\mathbf{T}(\gamma)\}_{\gamma}$ of the skein algebras $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ and $\mathrm{Sk}_{A}\left(\mathbb{S}_{1,1}\right)$ of the 4 -punctured sphere and the 1-punctured torus are positive.

Unlike the case of the closd torus $\mathbb{S}_{1,0}$, there does not seem to exist a simple closed formula for the structure constants of the bracelets basis of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ and $\mathrm{Sk}_{A}\left(\mathbb{S}_{1,1}\right)$.

4-punctured sphere

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$. view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a R-module, where $R=\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ - Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

4-punctured sphere

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$, so we can view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a R-module, where $R=\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$.

4-punctured sphere

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$, so we can view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a R-module, where $R=\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$.
- Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

(View $\mathbb{S}_{0,4}$ as a $\mathbb{Z} / 2 \mathbb{Z}$-quotient of a 4 -punctured sphere)

4-punctured sphere

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$, so we can view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a R-module, where $R=\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$.
- Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

(View $\mathbb{S}_{0,4}$ as a $\mathbb{Z} / 2 \mathbb{Z}$-quotient of a 4 -punctured sphere)

- $\left\{\gamma_{p}\right\}_{p \in B(\mathbb{Z})}$ is a basis of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as R-module.

Structure of the proof

- Algorithm computing the structure constants $C_{p_{1}, p_{2}}^{p} \in R$ defined by

$$
\mathbf{T}\left(\gamma_{p_{1}}\right) \mathbf{T}\left(\gamma_{p_{2}}\right)=\sum_{p \in B(\mathbb{Z})} C_{p_{1}, p_{2}}^{p} \mathbf{T}\left(\gamma_{p}\right) .
$$

and making manifest their positivity properties.
Algorithm based on the notions of scattering diagrams, broken lines and theta functions introduced in the context of mirror symmetry

Structure of the proof

- Algorithm computing the structure constants $C_{p_{1}, p_{2}}^{p} \in R$ defined by

$$
\mathbf{T}\left(\gamma_{p_{1}}\right) \mathbf{T}\left(\gamma_{p_{2}}\right)=\sum_{p \in B(\mathbb{Z})} C_{p_{1}, p_{2}}^{p} \mathbf{T}\left(\gamma_{p}\right) .
$$

and making manifest their positivity properties.

- Algorithm based on the notions of scattering diagrams, broken lines and theta functions introduced in the context of mirror symmetry (Kontsevich-Soibelman, Gross-Siebert).

Scattering diagram

We have $B(\mathbb{Z}) \subset B$, where

$$
B:=\mathbb{R}^{2} /\langle \pm i d\rangle \simeq\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid x \geq 0 \text { if } y=0\right\}
$$

Scattering diagram

We have $B(\mathbb{Z}) \subset B$, where

$$
B:=\mathbb{R}^{2} /\langle \pm i d\rangle \simeq\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid x \geq 0 \text { if } y=0\right\}
$$

"Scattering diagram": attach a power series $f_{m, n}$ to every ray in B with rational slope of primitive direction $(m, n) \in B(\mathbb{Z})$.

Broken line

> - Continuous piecewise integral affine line, bending along rays of rational slopes, decorated by monomials.

Broken line

- γ broken line in \mathfrak{D} of asympotic direction $p \in B(\mathbb{Z})$ and endpoint Q

Broken line

- γ broken line in \mathfrak{D} of asympotic direction $p \in B(\mathbb{Z})$ and endpoint Q
- Continuous piecewise integral affine line, bending along rays of rational slopes, decorated by monomials.

Broken line

- γ broken line in \mathfrak{D} of asympotic direction $p \in B(\mathbb{Z})$ and endpoint Q
- Continuous piecewise integral affine line, bending along rays of rational slopes, decorated by monomials.
- Monomial attached to the linearity domain L of the form $c_{L} z^{p_{L}}$, where $c_{L} \in R$, and $-p_{L}$ parallel to the direction of L.

Broken line

- γ broken line in \mathfrak{D} of asympotic direction $p \in B(\mathbb{Z})$ and endpoint Q
- Continuous piecewise integral affine line, bending along rays of rational slopes, decorated by monomials.
- Monomial attached to the linearity domain L of the form $c_{L} z^{p_{L}}$, where $c_{L} \in R$, and $-p_{L}$ parallel to the direction of L.
- Asymptotic line parallel to p, with monomial z^{-p}.

Broken line

- Bending formula for a broken line passing between the domains of linearity L and L^{\prime} by bending along $\mathbb{R}_{\geq 0}(m, n)$.
- Write $m_{L}=c_{I} z^{p_{L}}, m_{L^{\prime}}=c_{L^{\prime}} z^{P_{L^{\prime}}}, N=\left|\operatorname{det}\left((m, r), p_{L}\right)\right|$, and $f_{m, n}=\sum_{k \geq 0} c_{k} z^{-k(m, n)}$, then there exists a sequence $n=\left(n_{k}\right)_{k \geq 0}$ of non-negative integers with $\sum_{k \geq 0} n_{k}=N$ such that, denoting by

the term proportional to $\left(\prod_{k \geq 0} c_{k}^{n_{k}}\right) z^{-\left(\sum_{k \geq 0} n_{k} k\right)(m, n)}$ in

we have

Broken line

- Bending formula for a broken line passing between the domains of linearity L and L^{\prime} by bending along $\mathbb{R}_{\geq 0}(m, n)$.

[^0]
Broken line

- Bending formula for a broken line passing between the domains of linearity L and L^{\prime} by bending along $\mathbb{R}_{\geq 0}(m, n)$.
- Write $m_{L}=c_{L} z^{p_{L}}, m_{L^{\prime}}=c_{L^{\prime}} z^{p_{L^{\prime}}}, N=\left|\operatorname{det}\left((m, n), p_{L}\right)\right|$, and $f_{m, n}=\sum_{k \geq 0} c_{k} z^{-k(m, n)}$, then there exists a sequence $n=\left(n_{k}\right)_{k \geq 0}$ of non-negative integers with $\sum_{k \geq 0} n_{k}=N$ such that, denoting by

$$
\beta_{n}\left(\prod_{k \geq 0} c_{k}^{n_{k}}\right) z^{-\left(\sum_{k \geq 0} n_{k} k\right)(m, n)}
$$

the term proportional to $\left(\prod_{k \geq 0} c_{k}^{n_{k}}\right) z^{-\left(\sum_{k \geq 0} n_{k} k\right)(m, n)}$ in

$$
\prod_{j=0}^{N-1}\left(\sum_{k \geq 0} c_{k} A^{4 k\left(j-\frac{N-1}{2}\right)} z^{-k(m, n)}\right)
$$

we have

$$
c_{L^{\prime}}=\left(\beta_{n} \prod_{k \geq 0} c_{k}^{n_{k}}\right) c_{L} \text { and } p_{L^{\prime}}=p_{L}-\left(\sum_{k \geq 0} n_{k} k\right)(m, n)
$$

Broken line

- For every $p_{1}, p_{2}, p \in B(\mathbb{Z})$ and $Q \in B$ generic close to p, define

$$
C_{p_{1}, p_{2}}^{\mathfrak{D}, p}(Q):=\sum_{\left(\gamma_{1}, \gamma_{2}\right)} c\left(\gamma_{1}\right) c\left(\gamma_{2}\right) A^{2 \operatorname{det}\left(s\left(\gamma_{1}\right), s\left(\gamma_{2}\right)\right)} \in R
$$

where the sum is over pairs $\left(\gamma_{1}, \gamma_{2}\right)$ of quantum broken lines for \mathfrak{D} with charges p_{1}, p_{2} and common endpoint Q, such that writing $c\left(\gamma_{1}\right) z^{s\left(\gamma_{1}\right)}$ and $c\left(\gamma_{2}\right) z^{s\left(\gamma_{2}\right)}$ the final monomials, we have $s\left(\gamma_{1}\right)+s\left(\gamma_{2}\right)=p$.

Broken line

- For every $p_{1}, p_{2}, p \in B(\mathbb{Z})$ and $Q \in B$ generic close to p, define

$$
C_{p_{1}, p_{2}}^{\mathfrak{D}, p}(Q):=\sum_{\left(\gamma_{1}, \gamma_{2}\right)} c\left(\gamma_{1}\right) c\left(\gamma_{2}\right) A^{2 \operatorname{det}\left(s\left(\gamma_{1}\right), s\left(\gamma_{2}\right)\right)} \in R
$$

where the sum is over pairs $\left(\gamma_{1}, \gamma_{2}\right)$ of quantum broken lines for \mathfrak{D} with charges p_{1}, p_{2} and common endpoint Q, such that writing $c\left(\gamma_{1}\right) z^{s\left(\gamma_{1}\right)}$ and $c\left(\gamma_{2}\right) z^{s\left(\gamma_{2}\right)}$ the final monomials, we have $s\left(\gamma_{1}\right)+s\left(\gamma_{2}\right)=p$.

- A scattering diagram \mathfrak{D} is consistent if for every $p_{1}, p_{2}, p \in B(\mathbb{Z})$, $C_{p_{1}, p_{2}}^{\mathfrak{O}, p_{2}}(Q)$ does not depend on the choice of the point Q, and the product on the free R-module

$$
\mathcal{A}_{\mathfrak{D}}:=\bigoplus_{p \in B(\mathbb{Z})} R \vartheta_{p}
$$

defined by

$$
\vartheta_{p_{1}} \vartheta_{p_{2}}=\sum_{p \in B(\mathbb{Z})} C_{p_{1}, p_{2}}^{\mathfrak{D}, p} \vartheta_{p}
$$

is associative.

Strategy: construct a consistent scattering diagram \mathfrak{D} and an isomorphism

$$
\varphi: \mathcal{A}_{\mathfrak{D}} \rightarrow \mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)
$$

such that

$$
\varphi\left(\vartheta_{p}\right)=\mathbf{T}\left(\gamma_{p}\right)
$$

for every $p \in B(\mathbb{Z})$.

Scattering diagram

- Notations:

Scattering diagram

- Notations:

$$
\begin{aligned}
F(r, s, y, x):= & 1+\frac{r x\left(1+x^{2}\right)}{\left(1-A^{-4} x^{2}\right)\left(1-A^{4} x^{2}\right)}+\frac{y x^{2}}{\left(1-A^{-4} x^{2}\right)\left(1-A^{4} x^{2}\right)} \\
& +\frac{s x^{3}\left(1+s x+x^{2}\right)}{\left(1-A^{-4} x^{2}\right)\left(1-x^{2}\right)^{2}\left(1-A^{4} x^{2}\right)} .
\end{aligned}
$$

Scattering diagram

- Notations:

$$
\begin{aligned}
F(r, s, y, x):= & 1+\frac{r x\left(1+x^{2}\right)}{\left(1-A^{-4} x^{2}\right)\left(1-A^{4} x^{2}\right)}+\frac{y x^{2}}{\left(1-A^{-4} x^{2}\right)\left(1-A^{4} x^{2}\right)} \\
& +\frac{s x^{3}\left(1+s x+x^{2}\right)}{\left(1-A^{-4} x^{2}\right)\left(1-x^{2}\right)^{2}\left(1-A^{4} x^{2}\right)} .
\end{aligned}
$$

$$
\begin{gathered}
R_{1,0}:=a_{1} a_{2}+a_{3} a_{4}, \quad R_{0,1}:=a_{1} a_{3}+a_{2} a_{4}, \quad R_{1,1}:=a_{1} a_{4}+a_{2} a_{3}, \\
y:=a_{1} a_{2} a_{3} a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+\left(A^{2}-A^{-2}\right)^{2} .
\end{gathered}
$$

Scattering diagram

- Notations:

$$
\begin{aligned}
F(r, s, y, x):= & 1+\frac{r x\left(1+x^{2}\right)}{\left(1-A^{-4} x^{2}\right)\left(1-A^{4} x^{2}\right)}+\frac{y x^{2}}{\left(1-A^{-4} x^{2}\right)\left(1-A^{4} x^{2}\right)} \\
& +\frac{s x^{3}\left(1+s x+x^{2}\right)}{\left(1-A^{-4} x^{2}\right)\left(1-x^{2}\right)^{2}\left(1-A^{4} x^{2}\right)} .
\end{aligned}
$$

$$
\begin{gathered}
R_{1,0}:=a_{1} a_{2}+a_{3} a_{4}, \quad R_{0,1}:=a_{1} a_{3}+a_{2} a_{4}, \quad R_{1,1}:=a_{1} a_{4}+a_{2} a_{3}, \\
y:=a_{1} a_{2} a_{3} a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+\left(A^{2}-A^{-2}\right)^{2} .
\end{gathered}
$$

- Define a scattering diagram \mathfrak{D} by

$$
\begin{aligned}
& \text { if }(m, n)=(1,0) \bmod 2, f_{m, n}:=F\left(R_{1,0}, R_{0,1} R_{1,1}, y, z^{-(m, n)}\right), \\
& \text { if }(m, n)=(0,1) \bmod 2, f_{m, n}:=F\left(R_{0,1}, R_{1,0} R_{1,1}, y, z^{-(m, n)}\right), \\
& \text { if }(m, n)=(1,1) \quad \bmod 2, f_{m, n}:=F\left(R_{1,1}, R_{1,0} R_{0,1}, y, z^{-(m, n)}\right) .
\end{aligned}
$$

Results

Theorem 1 (B, 2020)

The scattering diagram D is consistent.

Theorem 2 (B, 2020)

There exists an isomore hism

Results

Theorem 1 ($\mathrm{B}, 2020$)

The scattering diagram \mathfrak{D} is consistent.

such that
for every $p \in B(\mathbb{Z})$.

Theorem 2 is proved by computations. The proof of Theorem 1 relies on enumerative algebraic geometry.

Results

Theorem 1 ($\mathrm{B}, 2020$)

The scattering diagram \mathfrak{D} is consistent.

Theorem 2 (B, 2020)
There exists an isomorphism

$$
\varphi: \mathcal{A}_{\mathfrak{D}} \rightarrow \mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)
$$

such that

$$
\varphi\left(\vartheta_{p}\right)=\mathbf{T}\left(\gamma_{p}\right)
$$

for every $p \in B(\mathbb{Z})$.

Theorem 2 is proved by computations. The proof of Theorem 1 relies on

 enumerative algebraic geometry.
Results

Theorem 1 ($\mathrm{B}, 2020$)

The scattering diagram \mathfrak{D} is consistent.

Theorem 2 (B, 2020)

There exists an isomorphism

$$
\varphi: \mathcal{A}_{\mathfrak{D}} \rightarrow \mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)
$$

such that

$$
\varphi\left(\vartheta_{p}\right)=\mathbf{T}\left(\gamma_{p}\right)
$$

for every $p \in B(\mathbb{Z})$.
Theorem 2 is proved by computations. The proof of Theorem 1 relies on enumerative algebraic geometry.

Enumerative geometry

smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.

- Y : smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.
- Y : smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.
- $N_{g, \beta}$: "counts" of genus g holomorphic curves in Y of class β intersecting D in a single point.

Enumerative geometry

- Y : smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.
- $N_{g, \beta}$: "counts" of genus g holomorphic curves in Y of class β intersecting D in a single point.
- Can use the numbers $N_{g, \beta}$ to cook up a consistent scattering diagram $\mathfrak{D}_{(Y, D)}$.

Enumerative geometry

- Y : smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.
- $N_{g, \beta}$: "counts" of genus g holomorphic curves in Y of class β intersecting D in a single point.
- Can use the numbers $N_{g, \beta}$ to cook up a consistent scattering diagram $\mathfrak{D}_{(Y, D)}$.
- Y : smooth cubic surface, D a triangle of lines.

Enumerative geometry

- Y : smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.
- $N_{g, \beta}$: "counts" of genus g holomorphic curves in Y of class β intersecting D in a single point.
- Can use the numbers $N_{g, \beta}$ to cook up a consistent scattering diagram $\mathfrak{D}_{(Y, D)}$.
- Y : smooth cubic surface, D a triangle of lines.

Theorem 2 (B, 2020)

$$
\mathfrak{D}_{(Y, D)} \simeq \mathfrak{D} .
$$

Enumerative geometry

- Y : smooth projective surface over \mathbb{C}, D normal crossings anticanonical divisor.
- $N_{g, \beta}$: "counts" of genus g holomorphic curves in Y of class β intersecting D in a single point.
- Can use the numbers $N_{g, \beta}$ to cook up a consistent scattering diagram $\mathfrak{D}_{(Y, D)}$.
- Y : smooth cubic surface, D a triangle of lines.

Theorem 2 (B, 2020)

$$
\mathfrak{D}_{(Y, D)} \simeq \mathfrak{D} .
$$

Simplest case: $27-3=8 \times 3$ lines in Y intersecting D in a single point.

Gauge theories from string/M-theory

> - $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory
> - Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 \mathrm{~d}$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 d$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 d$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.
- U : complement of a triangle of lines D in Y, hyperkäher manifold, D_{4} elliptic fibration in rotated complex structure, Σ : elliptic fiber.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 d$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.
- U : complement of a triangle of lines D in Y, hyperkäher manifold, D_{4} elliptic fibration in rotated complex structure, Σ : elliptic fiber.
- Realization of \mathcal{T} from M-theory on $\mathbb{R}^{1,3} \times U \times \mathbb{R}^{3}$ with a $M 5$-brane on $\mathbb{R}^{1,3} \times \Sigma$. Physical realization of holomorphic curves in (Y, D) as M2-branes determining the BPS spectrum of \mathcal{T}.

Gauge theories from string/M-theory

> - Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
> - Scattering diagram \mathfrak{D} encoding the BPS spectrum of \mathcal{T} (at large values of u on the Coulomb branch)

Gauge theories from string/M-theory

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.

Gauge theories from string/M-theory

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- Scattering diagram \mathfrak{D} encoding the BPS spectrum of \mathcal{T} (at large values of u on the Coulomb branch).

Gauge theories from string/M-theory

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- Scattering diagram \mathfrak{D} encoding the BPS spectrum of \mathcal{T} (at large values of u on the Coulomb branch).
- Broken lines describing framed BPS states.

Gauge theories from string/M-theory

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- Scattering diagram \mathfrak{D} encoding the BPS spectrum of \mathcal{T} (at large values of u on the Coulomb branch).
- Broken lines describing framed BPS states.
- BPS states of charges $(m, 0)$: 1 vector multiplet of charge $(2,0)$, and 8 hypermultiplets of charge $(1,0)$. The 8 hypermultiplets correspond to the 8 lines of Y intersecting in a single point intersecting one component of $D(27=3 \times 8+3)$.

Thank you for your attention!

[^0]: we have

