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Introduction

Topics:
Low-dimensional topology.
Enumerative algebraic geometry.
String theory realizations of supersymmetric gauge theories.
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Introduction

Low-dimensional topology: knots, links...
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Introduction

Enumerative algebraic geometry: 27 lines on a cubic surface (Cayley,
Salmon, 1849)
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Introduction

Result in low-dimensional topological: positive bases for Kauffman
bracket skein algebras of the 4-punctured torus and the 1-punctured
torus.
Proof based on the enumerative geometry of holomorphic curves in
complex cubic surfaces.
Proof motivated by the existence of dual realizations in
string/M-theory of the N = 2 Nf = 4 SU(2) gauge theory.
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Knots, links and framing

Knot in a manifold: a connected compact embedded 1-dimensional
submanifold.
Link in a manifold: the disjoint union of finitely many knots.
Framing of a link: a choice of nowhere vanishing section of its normal
bundle.
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Skein modules of 3-manifolds

The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an
oriented 3-manifold M is the Z[A±]-module generated by isotopy
classes of framed links in M satisfying the skein relations

= A + A−1 and L ∪ = −(A2 + A−2) L .

The diagrams in each relation indicate framed links that can be
isotoped to identical embeddings except within the neighborhood
shown, where the framing is vertical.
The skein module of M = R3 is Z[A±] (generated by the empty link).
The class of a framed link L ⊂ R3 in Z[A±] is the Kauffman bracket
polynomial of L (equivalent to the Jones polynomial).
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Skein algebras of surfaces

Given an oriented 2-manifold S, one can define a natural algebra
structure on the Kauffmann bracket skein module of the 3-manifold
M := S× (−1, 1): given two framed links L1 and L2 in S× (−1, 1),
and viewing the interval (−1, 1) as a vertical direction, the product
L1L2 is defined by placing L1 on top of L2.
We denote by SkA(S) the resulting associative Z[A±]-algebra with
unit. The skein algebra SkA(S) is in general non-commutative.

Pierrick Bousseau Strong positivity for the skein algebras 9 / 30



Skein algebras of surfaces

Given an oriented 2-manifold S, one can define a natural algebra
structure on the Kauffmann bracket skein module of the 3-manifold
M := S× (−1, 1): given two framed links L1 and L2 in S× (−1, 1),
and viewing the interval (−1, 1) as a vertical direction, the product
L1L2 is defined by placing L1 on top of L2.
We denote by SkA(S) the resulting associative Z[A±]-algebra with
unit. The skein algebra SkA(S) is in general non-commutative.

Pierrick Bousseau Strong positivity for the skein algebras 9 / 30



Skein algebras of surfaces

We consider the case where S is the complement Sg ,` of a finite
number ` of points in a compact oriented 2-manifold of genus g .
A multicurve on Sg ,` is the union of finitely many disjoint compact
connected embedded 1-dimensional submanifolds of Sg ,` such that
none of them bounds a disc in Sg ,`. Identifying Sg ,` with
Sg ,` × {0} ⊂ Sg ,` × (−1, 1), a multicurve on Sg ,` endowed with the
vertical framing naturally defined a framed link in Sg ,` × (−1, 1).

Theorem (Przytycki)
Isotopy classes of multicurves form a basis of SkA(Sg ,`) as Z[A±]-module.
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Example: closed torus

On the closed torus S1,0, isotopy classes of multicurves are in
bijection with

B(Z) := Z2/〈±id〉 ' {(m, n) ∈ Z× Z≥0 |m ≥ 0 if n = 0} .

For every p = (m, n) ∈ B(Z), denote by γp the corresponding isotopy
class of multicurves.
γp has gcd(m, n) connected components.
{γp}p∈B(Z) is a Z[A±]-linear basis of the skein algebra SkA(S0,1).
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Structure constants and positive bases

The structure constants C l
j,k ∈ R of a basis {ej}j∈J of an algebra A

over a ring R are defined by

ejek =
∑
l∈J

C l
j,kel .

For the skein algebra, R = Z[A±].

Definition
A basis {ej}j∈J of the skein algebra SkA(Sg ,` is called positive if its
structure constants belong to Z≥0[A±], i.e. are Laurent polynomials in A
with positive coefficients.

Question: is the basis of multicurves positive?
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Example: closed torus

One crossing to resolve:

γ(1,0)γ(0,1) = Aγ1,1 + A−1γ(−1,1) .

Two crossings to resolve:

γ(0,1)γ(2,1) = A−2γ(2,2) + A2γ(2,0) − 2A−2 − 2A2 .

Conclusion: the basis of multicurves is not positive in general.
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The bracelets basis

Let Tn(x) be the Chebyshev polynomials defined by

T0(x) = 1 ,T1(x) = x ,T2(x) = x2 − 2 ,

and for every n ≥ 2,

Tn+1(x) = xTn(x)− Tn−1(x) .

Writing x = λ+ λ−1, we have Tn(x) = λn + λ−n for every n ≥ 1.
Given an isotopy class γ of multicurve on Sg ,`, one can uniquely write
γ in SkA(Sg ,`) as γ = γn1

1 · · · γnr
r where γ1, · · · , γr are all distinct

isotopy classes of connected multicurves and nj ∈ Z>0, and we define

T(γ) := Tn1(γ1) · · ·Tnr (γr ) .

{T(γ)}γ : bracelets basis of the skein algebra SkA(Sg ,`).
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Example: closed torus

As T1(x) = x and T2(x) = x2 − 2,

T(γ(0,1))T(γ(2,1)) = T1(γ(0,1))T1(γ(1,0)) = γ(0,1)γ(1,0)

= A−2γ(2,2) + A2γ(2,0)−2A−2−2A2 = A−2(γ(2,2)−2) + A2(γ(2,0)−2)

= A−2T2(γ(1,1)) + A2T2(γ(1,0)) = A−2T(γ(2,2)) + A2T(γ(2,0))

Positive!
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Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)
For every g and `, the bracelets basis {T(γ)}γ of SkA(Sg ,`) is positive.

Theorem (Dylan Thurston, 2013)
For every g and `, after setting A = 1, the structure constants of the
bracelets basis {T(γ)}γ of SkA(Sg ,`) are non-negative.

Theorem (Frohman, Gelca, 2000)
The bracelets basis {T(γ)}γ of SkA(S1,0) of the closed torus S1,0 is
positive. In fact, for every p1, p2 ∈ B(Z),

T(γp1)T(γp2) = Adet(p1,p2)T(γp1+p2) + A− det(p1,p2)T(γp1−p2) .

The positivity of the bracelets basis is obvious for S0,0, S0,1, S0,2, S0,3.
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Main result

Theorem (B, 2020)
The bracelets bases {T(γ)}γ of the skein algebras SkA(S0,4) and SkA(S1,1)
of the 4-punctured sphere and the 1-punctured torus are positive.

Unlike the case of the closd torus S1,0, there does not seem to exist a
simple closed formula for the structure constants of the bracelets basis of
SkA(S0,4) and SkA(S1,1).
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4-punctured sphere
Focus on the case of the 4-punctured sphere S0,4.
Peripheral curves a1, a2, a3, a4, in the center of SkA(S0,4), so we can
view SkA(S0,4) as a R-module, where R = Z[A±][a1, a2, a3, a4].
Isotopy classes of multicurves in S0,4 without peripheral connected
components are in bjection with

B(Z) := Z2/〈±id〉 ' {(m, n) ∈ Z× Z≥0 |m ≥ 0 if n = 0} .
(View S0,4 as a Z/2Z-quotient of a 4-punctured sphere)
{γp}p∈B(Z) is a basis of SkA(S0,4) as R-module.
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(View S0,4 as a Z/2Z-quotient of a 4-punctured sphere)
{γp}p∈B(Z) is a basis of SkA(S0,4) as R-module.
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Structure of the proof

Algorithm computing the structure constants Cp
p1,p2 ∈ R defined by

T(γp1)T(γp2) =
∑

p∈B(Z)
Cp

p1,p2T(γp) .

and making manifest their positivity properties.
Algorithm based on the notions of scattering diagrams, broken lines
and theta functions introduced in the context of mirror symmetry
(Kontsevich-Soibelman, Gross-Siebert).
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Scattering diagram

We have B(Z) ⊂ B, where

B := R2/〈±id〉 ' {(x , y) ∈ Z× Z≥0 | x ≥ 0 if y = 0} .

“Scattering diagram": attach a power series fm,n to every ray in B with
rational slope of primitive direction (m, n) ∈ B(Z).

0
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Broken line

γ broken line in D of asympotic direction p ∈ B(Z) and endpoint Q
Continuous piecewise integral affine line, bending along rays of
rational slopes, decorated by monomials.
Monomial attached to the linearity domain L of the form cLzpL , where
cL ∈ R, and −pL parallel to the direction of L.
Asymptotic line parallel to p, with monomial z−p.

Q

γ
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Broken line
Bending formula for a broken line passing between the domains of
linearity L and L′ by bending along R≥0(m, n).
Write mL = cLzpL , mL′ = cL′zpL′ , N = | det((m, n), pL)|, and
fm,n =

∑
k≥0 ckz−k(m,n), then there exists a sequence n = (nk)k≥0 of

non-negative integers with
∑

k≥0 nk = N such that, denoting by

βn

∏
k≥0

cnk
k

 z−(
∑

k≥0 nkk)(m,n)

the term proportional to
(∏

k≥0 cnk
k

)
z−(
∑

k≥0 nkk)(m,n) in

N−1∏
j=0

∑
k≥0

ckA4k(j−N−1
2 )z−k(m,n)

 ,

we have

cL′ =

βn
∏
k≥0

cnk
k

 cL and pL′ = pL −

∑
k≥0

nkk

 (m, n) .
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Broken line
For every p1, p2, p ∈ B(Z) and Q ∈ B generic close to p, define

CD,p
p1,p2(Q) :=

∑
(γ1,γ2)

c(γ1)c(γ2)A2 det(s(γ1),s(γ2)) ∈ R ,

where the sum is over pairs (γ1, γ2) of quantum broken lines for D
with charges p1,p2 and common endpoint Q, such that writing
c(γ1)zs(γ1) and c(γ2)zs(γ2) the final monomials, we have
s(γ1) + s(γ2) = p.
A scattering diagram D is consistent if for every p1, p2, p ∈ B(Z),
CD,p

p1,p2(Q) does not depend on the choice of the point Q, and the
product on the free R-module

AD :=
⊕

p∈B(Z)
R ϑp

defined by
ϑp1ϑp2 =

∑
p∈B(Z)

CD,p
p1,p2ϑp

is associative.
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Proof

Strategy: construct a consistent scattering diagram D and an isomorphism

ϕ : AD → SkA(S0,4)

such that
ϕ(ϑp) = T(γp)

for every p ∈ B(Z).
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Scattering diagram
Notations:

F (r , s, y , x) := 1+ rx(1 + x2)
(1− A−4x2)(1− A4x2) + yx2

(1− A−4x2)(1− A4x2)

+ sx3(1 + sx + x2)
(1− A−4x2)(1− x2)2(1− A4x2) .

R1,0 := a1a2 + a3a4 , R0,1 := a1a3 + a2a4 , R1,1 := a1a4 + a2a3 ,

y := a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4 + (A2 − A−2)2 .

Define a scattering diagram D by
if (m, n) = (1, 0) mod 2 , fm,n := F (R1,0,R0,1R1,1, y , z−(m,n)) ,

if (m, n) = (0, 1) mod 2 , fm,n := F (R0,1,R1,0R1,1, y , z−(m,n)) ,
if (m, n) = (1, 1) mod 2 , fm,n := F (R1,1,R1,0R0,1, y , z−(m,n)) .
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Results

Theorem 1 (B, 2020)
The scattering diagram D is consistent.

Theorem 2 (B, 2020)
There exists an isomorphism

ϕ : AD → SkA(S0,4)

such that
ϕ(ϑp) = T(γp)

for every p ∈ B(Z).

Theorem 2 is proved by computations. The proof of Theorem 1 relies on
enumerative algebraic geometry.
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Enumerative geometry

Y : smooth projective surface over C, D normal crossings
anticanonical divisor.
Ng ,β: “counts" of genus g holomorphic curves in Y of class β
intersecting D in a single point.
Can use the numbers Ng ,β to cook up a consistent scattering diagram
D(Y ,D).
Y : smooth cubic surface, D a triangle of lines.

Theorem 2 (B, 2020)

D(Y ,D) ' D .

Simplest case: 27− 3 = 8× 3 lines in Y intersecting D in a single point.
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Gauge theories from string/M-theory

T : N = 2 Nf = 4 SU(2) gauge theory.
Realization of T as a class S theory: N = (2, 0) 6d SCFT of class A1
compactified on S0,4. Physical realization of the skein algebra
SkA(S0,4) as an algebra of supersymmetric line operators.
U: complement of a triangle of lines D in Y , hyperkäher manifold,
D4 elliptic fibration in rotated complex structure, Σ: elliptic fiber.
Realization of T from M-theory on R1,3 × U × R3 with a M5-brane
on R1,3 × Σ. Physical realization of holomorphic curves in (Y ,D) as
M2-branes determining the BPS spectrum of T .
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Gauge theories from string/M-theory

Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
Scattering diagram D encoding the BPS spectrum of T (at large
values of u on the Coulomb branch).
Broken lines describing framed BPS states.
BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and
8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond
to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 = 3× 8 + 3).

Pierrick Bousseau Strong positivity for the skein algebras 29 / 30



Gauge theories from string/M-theory

Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
Scattering diagram D encoding the BPS spectrum of T (at large
values of u on the Coulomb branch).
Broken lines describing framed BPS states.
BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and
8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond
to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 = 3× 8 + 3).

Pierrick Bousseau Strong positivity for the skein algebras 29 / 30



Gauge theories from string/M-theory

Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
Scattering diagram D encoding the BPS spectrum of T (at large
values of u on the Coulomb branch).
Broken lines describing framed BPS states.
BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and
8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond
to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 = 3× 8 + 3).

Pierrick Bousseau Strong positivity for the skein algebras 29 / 30



Gauge theories from string/M-theory

Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
Scattering diagram D encoding the BPS spectrum of T (at large
values of u on the Coulomb branch).
Broken lines describing framed BPS states.
BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and
8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond
to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 = 3× 8 + 3).

Pierrick Bousseau Strong positivity for the skein algebras 29 / 30



Gauge theories from string/M-theory

Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
Scattering diagram D encoding the BPS spectrum of T (at large
values of u on the Coulomb branch).
Broken lines describing framed BPS states.
BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and
8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond
to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 = 3× 8 + 3).

Pierrick Bousseau Strong positivity for the skein algebras 29 / 30



End

Thank you for your attention!
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