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Topics:
@ Low-dimensional topology.
@ Enumerative algebraic geometry.

@ String theory realizations of supersymmetric gauge theories.
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Introduction

@ Low-dimensional topology: knots, links...
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Introduction

e Enumerative algebraic geometry: 27 lines on a cubic surface (Cayley,
Salmon, 1849)
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Introduction

@ String theory realizations of supersymmetric gauge theories
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Introduction

@ Result in low-dimensional topological: positive bases for Kauffman
bracket skein algebras of the 4-punctured torus and the 1-punctured
torus.
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Introduction

@ Result in low-dimensional topological: positive bases for Kauffman
bracket skein algebras of the 4-punctured torus and the 1-punctured

torus.
@ Proof based on the enumerative geometry of holomorphic curves in
complex cubic surfaces.
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Introduction

@ Result in low-dimensional topological: positive bases for Kauffman
bracket skein algebras of the 4-punctured torus and the 1-punctured

torus.
@ Proof based on the enumerative geometry of holomorphic curves in
complex cubic surfaces.

@ Proof motivated by the existence of dual realizations in
string/M-theory of the N' =2 N¢ = 4 SU(2) gauge theory.
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Knots, links and framing

@ Knot in a manifold: a connected compact embedded 1-dimensional
submanifold.
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Knots, links and framing

@ Knot in a manifold: a connected compact embedded 1-dimensional
submanifold.

@ Link in a manifold: the disjoint union of finitely many knots.
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Knots, links and framing

@ Knot in a manifold: a connected compact embedded 1-dimensional
submanifold.

@ Link in a manifold: the disjoint union of finitely many knots.

@ Framing of a link: a choice of nowhere vanishing section of its normal
bundle.
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Skein modules of 3-manifolds

e The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an
oriented 3-manifold M is the Z[A*]-module generated by isotopy
classes of framed links in M satisfying the skein relations

X=AX+a1 5 and LU )=—(A+A?)L.
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Skein modules of 3-manifolds

e The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an
oriented 3-manifold M is the Z[A%]-module generated by isotopy
classes of framed links in M satisfying the skein relations

X=AX+a1 5 and LU )=—(A+A?)L.

@ The diagrams in each relation indicate framed links that can be
isotoped to identical embeddings except within the neighborhood
shown, where the framing is vertical.
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Skein modules of 3-manifolds

e The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an
oriented 3-manifold M is the Z[A%]-module generated by isotopy
classes of framed links in M satisfying the skein relations

X=AX+a1 5 and LU )=—(A+A?)L.

@ The diagrams in each relation indicate framed links that can be
isotoped to identical embeddings except within the neighborhood
shown, where the framing is vertical.

@ The skein module of M = R? is Z[A¥] (generated by the empty link).

The class of a framed link L C R® in Z[AT] is the Kauffman bracket
polynomial of L (equivalent to the Jones polynomial).
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Skein algebras of surfaces

@ Given an oriented 2-manifold S, one can define a natural algebra
structure on the Kauffmann bracket skein module of the 3-manifold
M :=S x (—1,1): given two framed links L1 and Ly in S x (—1,1),
and viewing the interval (—1,1) as a vertical direction, the product
LyL5 is defined by placing L1 on top of L.
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Skein algebras of surfaces

@ Given an oriented 2-manifold S, one can define a natural algebra
structure on the Kauffmann bracket skein module of the 3-manifold
M :=S x (—1,1): given two framed links L1 and Ly in S x (—1,1),
and viewing the interval (—1,1) as a vertical direction, the product
LyL5 is defined by placing L1 on top of L.

e We denote by Ska(S) the resulting associative Z[A*]-algebra with
unit. The skein algebra Ska(S) is in general non-commutative.
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Skein algebras of surfaces

@ We consider the case where S is the complement Sz ; of a finite
number ¢ of points in a compact oriented 2-manifold of genus g.
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Skein algebras of surfaces

@ We consider the case where S is the complement Sz, of a finite
number ¢ of points in a compact oriented 2-manifold of genus g.

@ A multicurve on Sgz 4 is the union of finitely many disjoint compact
connected embedded 1-dimensional submanifolds of Sz ¢ such that
none of them bounds a disc in Sz ;. Identifying Sz, with
Sg.e x {0} C Sg ¢ x (—1,1), a multicurve on S, , endowed with the
vertical framing naturally defined a framed link in S, x (—1,1).
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Skein algebras of surfaces

@ We consider the case where S is the complement S, ; of a finite
number ¢ of points in a compact oriented 2-manifold of genus g.

@ A multicurve on Sgz 4 is the union of finitely many disjoint compact
connected embedded 1-dimensional submanifolds of Sz ¢ such that
none of them bounds a disc in Sz ;. Identifying Sz, with
Sg.e x {0} C Sg ¢ x (—1,1), a multicurve on S, , endowed with the
vertical framing naturally defined a framed link in S, x (—1,1).

Theorem (Przytycki)

Isotopy classes of multicurves form a basis of Ska(Sg¢) as Z[A*]-module.
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Example: closed torus
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Example: closed torus

@ On the closed torus Sy g, isotopy classes of multicurves are in
bijection with

B(Z) :=7?/(+id) ~ {(m,n) € Z x Z>o |m >0 if n=0}.
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Example: closed torus

@ On the closed torus Sy g, isotopy classes of multicurves are in
bijection with

B(Z) :=7?/(+id) ~ {(m,n) € Z x Z>o |m >0 if n=0}.

e For every p = (m, n) € B(Z), denote by -y, the corresponding isotopy
class of multicurves.
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Example: closed torus

@ On the closed torus Sy g, isotopy classes of multicurves are in
bijection with

B(Z) :=7?/(+id) ~ {(m,n) € Z x Z>o |m >0 if n=0}.

e For every p = (m, n) € B(Z), denote by -y, the corresponding isotopy
class of multicurves.

@ 7, has gcd(m, n) connected components.
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Example: closed torus

@ On the closed torus Sy g, isotopy classes of multicurves are in
bijection with

B(Z) :=7?/(+id) ~ {(m,n) € Z x Z>o |m >0 if n=0}.

e For every p = (m, n) € B(Z), denote by -y, the corresponding isotopy
class of multicurves.

@ 7, has gcd(m, n) connected components.
° {Vp}tpen(z) is a Z[A*]-linear basis of the skein algebra Ska(So 1)
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Structure constants and positive bases

@ The structure constants C/, € R of a basis {e;};c, of an algebra A
over a ring R are defined by

_ /
geu =Y e
led
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Structure constants and positive bases

@ The structure constants C/, € R of a basis {e;};c, of an algebra A
over a ring R are defined by

_ /
geu =Y e
led

o For the skein algebra, R = Z[AT].
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Structure constants and positive bases

@ The structure constants C/, € R of a basis {e;};c, of an algebra A
over a ring R are defined by

_ /
ook =Y Cluer
led

o For the skein algebra, R = Z[AT].

Definition
A basis {ej}jc of the skein algebra Ska(Sg ¢ is called positive if its
structure constants belong to Z>o[A¥], i.e. are Laurent polynomials in A

with positive coefficients.
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Structure constants and positive bases

@ The structure constants C/, € R of a basis {e;};c, of an algebra A
over a ring R are defined by

_ /
ook =Y Cluer
led

o For the skein algebra, R = Z[AT].

Definition
A basis {ej}jc of the skein algebra Ska(Sg ¢ is called positive if its
structure constants belong to Z>o[A¥], i.e. are Laurent polynomials in A

with positive coefficients.

@ Question: is the basis of multicurves positive?
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Example: closed torus

Pierrick Bousseau Strong positivity for the skein algebras



Example: closed torus

@ One crossing to resolve:

Y001 = A1+ A Y1 -
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Example: closed torus

@ One crossing to resolve:

Y001 = A1+ A Y1 -

@ Two crossings to resolve:

7Y(0,1)Y(2,1) = A_2’7(2,2) + AQ’Y(Q,O) —2A72 _2A%.
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Example: closed torus

@ One crossing to resolve:

Y001 = A1+ A Y1 -

@ Two crossings to resolve:

7Y(0,1)Y(2,1) = A_Q’Y(z,z) + AQ’Y(Q,O) —2A72 _2A%.

@ Conclusion: the basis of multicurves is not positive in general.

Pierrick Bousseau Strong positivity for the skein algebras



The bracelets basis
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The bracelets basis

o Let T,(x) be the Chebyshev polynomials defined by
To(x) =1, Ti(x) = x, Ta(x) = x> -2,
and for every n > 2,
Toy1(x) = xTa(x) — Tao1(x).

Writing x = A + A™1, we have T,(x) = A" + A" for every n > 1.

Pierrick Bousseau Strong positivity for the skein algebras



The bracelets basis

o Let T,(x) be the Chebyshev polynomials defined by
To(x) =1, Ti(x) = x, Ta(x) = x> — 2,
and for every n > 2,
Totr1(x) = xTh(x) — Th-1(x) -

Writing x = A + A™1, we have T,(x) = A" + A" for every n > 1.
@ Given an isotopy class «y of multicurve on S, ¢, one can uniquely write

7 in Ska(Sg¢) as v =7 -+ - where 41, -+, 7, are all distinct
isotopy classes of connected multicurves and n; € Z~g, and we define

T(y) == To(1) - Ta, () -
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The bracelets basis

o Let T,(x) be the Chebyshev polynomials defined by
To(x) =1, Ti(x) = x, Ta(x) = x> — 2,
and for every n > 2,
Totr1(x) = xTh(x) — Th-1(x) -

Writing x = A + A™1, we have T,(x) = A" + A" for every n > 1.
@ Given an isotopy class «y of multicurve on S, ¢, one can uniquely write

7 in Ska(Sg¢) as v =7 -+ - where 41, -+, 7, are all distinct
isotopy classes of connected multicurves and n; € Z~g, and we define

T(y) == To(1) - Ta, () -

o {T(v)}y: bracelets basis of the skein algebra Ska(Sg.¢).
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Example: closed torus

e As T1(x) = x and Tp(x) = x> — 2,
T(7(0,1))T(’Y(2,1)) = Tl(V(o,l))Tl(’Y(l,o)) = 7(0,1)7(1,0)
= A y22) F A%Y(20) —2A72 = 2A% = A% (2.2) — 2) + A% (V2,0 — 2)

= A7 (va) + A To(10,0) = AT (1e2) + AT(2,0)
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Example: closed torus

e As T1(x) = x and Tp(x) = x> — 2,
T(7(0,1))T(’Y(2,1)) = Tl(V(o,l))Tl(’Y(l,o)) = 7(0,1)7(1,0)
= A y22) F A%Y(20) —2A72 = 2A% = A% (2.2) — 2) + A% (V2,0 — 2)

= A7 (va) + A To(10,0) = AT (1e2) + AT(2,0)

@ Positive!
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Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)

For every g and /, the bracelets basis {T(v)}, of Ska(Sg¢) is positive.
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Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)

For every g and /, the bracelets basis {T(v)}, of Ska(Sg¢) is positive.

Theorem (Dylan Thurston, 2013)

For every g and ¢, after setting A = 1, the structure constants of the
bracelets basis {T(v)}, of Ska(Sg,) are non-negative.
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Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)
For every g and /, the bracelets basis {T(v)}, of Ska(Sg¢) is positive.

Theorem (Dylan Thurston, 2013)
For every g and ¢, after setting A = 1, the structure constants of the
bracelets basis {T(v)}, of Ska(Sg,) are non-negative.

Theorem (Frohman, Gelca, 2000)

The bracelets basis {T()}, of Ska(S1,0) of the closed torus Sy is
positive. In fact, for every p;1, p» € B(Z),

T(’YPI)T(,YPZ) = Adet(phpz)T(fYPH‘Pz) + A~ det(p1,p2)-|-(,yp1_p2) .

Pierrick Bousseau Strong positivity for the skein algebras 16 /30



Conjectural positivity of the bracelets basis

Conjecture (Dylan Thurston, 2013)
For every g and /, the bracelets basis {T(v)}, of Ska(Sg¢) is positive.

Theorem (Dylan Thurston, 2013)

For every g and ¢, after setting A = 1, the structure constants of the
bracelets basis {T(v)}, of Ska(Sg,) are non-negative.

Theorem (Frohman, Gelca, 2000)

The bracelets basis {T()}, of Ska(S1,0) of the closed torus Sy is
positive. In fact, for every p;1, p» € B(Z),

T(’YPI)T(,YPZ) = Adet(phpz)T(fYPH‘Pz) + A~ det(p1,p2)-|-(,yp1_p2) .

The positivity of the bracelets basis is obvious for Sg o, So.1, So,2, So 3.
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Theorem (B, 2020)

The bracelets bases {T ()} of the skein algebras Ska(Sop4) and Ska(S1,1)
of the 4-punctured sphere and the 1-punctured torus are positive.
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Theorem (B, 2020)

The bracelets bases {T ()} of the skein algebras Ska(Sop4) and Ska(S1,1)
of the 4-punctured sphere and the 1-punctured torus are positive.

Unlike the case of the closd torus S; o, there does not seem to exist a
simple closed formula for the structure constants of the bracelets basis of
SkA(SOA) and SkA(Sl,l)-
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4-punctured sphere

@ Focus on the case of the 4-punctured sphere Sg 4.
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4-punctured sphere

@ Focus on the case of the 4-punctured sphere Sg 4.
@ Peripheral curves aj, ao, a3, as, in the center of Ska(Sp4), so we can
view Ska(So4) as a R-module, where R = Z[A*][ay, a2, a3, a4].
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4-punctured sphere

@ Focus on the case of the 4-punctured sphere Sg 4.
@ Peripheral curves aj, ao, a3, as, in the center of Ska(Sp4), so we can

view Ska(So4) as a R-module, where R = Z[A*][ay, a2, a3, a4].
@ Isotopy classes of multicurves in Sg 4 without peripheral connected
components are in bjection with
B(Z) := 72 /{%id) ~ {(m,n) € Z x Z>o |m >0 if n=0}.

(View So4 as a Z/2Z-quotient of a 4-punctured sphere)
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4-punctured sphere

@ Focus on the case of the 4-punctured sphere Sg 4.

@ Peripheral curves aj, ao, a3, as, in the center of Ska(Sp4), so we can
view Ska(So4) as a R-module, where R = Z[A*][ay, a2, a3, a4].

@ Isotopy classes of multicurves in Sg 4 without peripheral connected
components are in bjection with

B(Z) := 72 /{%id) ~ {(m,n) € Z x Z>o |m >0 if n=0}.

(View So4 as a Z/2Z-quotient of a 4-punctured sphere)
® {Vp}peB(z) is a basis of Ska(Sp4) as R-module.
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Structure of the proof

@ Algorithm computing the structure constants Cp, p, € R defined by

T('Vpl Z P1 7P2

peB(Z)

and making manifest their positivity properties.
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Structure of the proof

@ Algorithm computing the structure constants Cp, p, € R defined by

T('Vpl Z P1 7P2 )

peB(Z)

and making manifest their positivity properties.

@ Algorithm based on the notions of scattering diagrams, broken lines
and theta functions introduced in the context of mirror symmetry
(Kontsevich-Soibelman, Gross-Siebert).
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Scattering diagram

We have B(Z) C B, where

B :=R?/(+id) ~ {(x,y) € Zx Zzo |x >0 if y =0}.
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Scattering diagram

We have B(Z) C B, where
B :=R?/(+id) ~ {(x,y) € Z x Z>q |x >0 if y =0}.

“Scattering diagram": attach a power series f, , to every ray in B with
rational slope of primitive direction (m, n) € B(Z).

Pierrick Bousseau Strong positivity for the skein algebras



Broken line
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Broken line

@ 7 broken line in © of asympotic direction p € B(Z) and endpoint Q
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Broken line

@ 7 broken line in © of asympotic direction p € B(Z) and endpoint Q

@ Continuous piecewise integral affine line, bending along rays of
rational slopes, decorated by monomials.
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Broken line

@ 7 broken line in © of asympotic direction p € B(Z) and endpoint Q
@ Continuous piecewise integral affine line, bending along rays of
rational slopes, decorated by monomials.

@ Monomial attached to the linearity domain L of the form ¢; zPt, where
cL € R, and —p; parallel to the direction of L.
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Broken line

@ 7 broken line in © of asympotic direction p € B(Z) and endpoint Q

@ Continuous piecewise integral affine line, bending along rays of
rational slopes, decorated by monomials.

@ Monomial attached to the linearity domain L of the form ¢; zPt, where
cL € R, and —p; parallel to the direction of L.

@ Asymptotic line parallel to p, with monomial z7P.

v
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Broken line
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Broken line

@ Bending formula for a broken line passing between the domains of
linearity L and L’ by bending along R>q(m, n).
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Broken line

@ Bending formula for a broken line passing between the domains of
linearity L and L’ by bending along R>q(m, n).

e Write mi = ¢, zPt, myy = cpzPv, N = | det((m, n), p)|, and
fnn = k>0 ckz~KUM™™) | then there exists a sequence n = (nk)x>o of
non-negative integers with > k>0 Nk = N such that, denoting by

Bn H C;:k z_(zkzo nik)(m,n)
k>0
the term proportional to (szo Cgk) z—(ZkZOnkk)(m,n) i

N—-1

H ZCkA4k(jf%)sz(m,n)
j=0 \k>0

we have

cv=|Ba]] cf|cLand pr=p.— | > nck|(m,n).
k>0 k>0
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Broken line

e For every p1, p2,p € B(Z) and Q € B generic close to p, define
P (Q) =Y. c(71)c(y2)A2dets(n)s(2)) ¢ R
(711’72)
where the sum is over pairs (71,72) of quantum broken lines for ©

with charges p1,p> and common endpoint @, such that writing
c(71)z°0m) and ¢(2)z5(") the final monomials, we have

s(m) +s(r2) =p.

Pierrick Bousseau Strong positivity for the skein algebras



Broken line

e For every p1, p2,p € B(Z) and Q € B generic close to p, define
P (Q) =Y. c(71)c(y2)A2dets(n)s(2)) ¢ R
(71,72)
where the sum is over pairs (71,72) of quantum broken lines for ©

with charges p1,p> and common endpoint @, such that writing
c(71)z°0m) and ¢(2)z5(") the final monomials, we have

s(n) +s(72) = p.

@ A scattering diagram D is consistent if for every p1, p2, p € B(Z),
CaB.(Q) does not depend on the choice of the point Q, and the
product on the free R-module

D i,

pEB(Z)

97
= 2 Gl
pEB(Z)

defined by

is associative.
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Strategy: construct a consistent scattering diagram © and an isomorphism
©: .A@ — SkA(SOA)

such that
P(Up) = T(7p)
for every p € B(Z).
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Scattering diag

Pierrick Bousseau Strong positivity for the skein algebras



Scattering diagram

o Notations:
(1 + x?) n yx?
(1—-A4x2)(1 - A**2) (1 —A*x2)(1 — A%x?)
sx3(1 + sx + x?)
(1 - A4x2)(1 — x2)2(1 — A%x?) "

F(r,s,y,x) =1+

_|_
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Scattering diagram

o Notations:
(1 + x?) n yx?
(1—-A4x2)(1 - A**2) (1 —A*x2)(1 — A%x?)
sx3(1 + sx + x?)
(1 - A4x2)(1 — x2)2(1 — A%x?) "

F(r,s,y,x) =1+

+

Rio0:=aia» + azas, Ro1:=aiaz+ axas, Ri1:= aias+ aras,

y = ajapazas + a5 + a3 + a3 + a3 + (A2 — A72)2.
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Scattering diagram

@ Notations:

(1 + x?) yx
F =1
(rey) =1 gy i abe) T 1 — A 51— Ah)
s3(1 + sx + x?)

T A 521 = x22(1 - Afx?)

Rio0:=aia» + azas, Ro1:=aiaz+ axas, Ri1:= aias+ aras,

y = ajapazas + a5 + a3 + a3 + a3 + (A2 — A72)2.

@ Define a scattering diagram ® by
if (m,n) =(1,0) mod 2, f,,:= F(Ruo0, R0,1R1,1,y,z_("””)),
if (m,n) =(0,1) mod 2, fpp:= F(Ro1, R1,0R1,1,y,z_(m’")),
if (m,n) =(1,1) mod 2, := F(Ry1, R1,0R0,1,y,z_(m’")),

Pierrick Bousseau Strong positivity for the skein algebras



Pierrick Bousseau Strong positivity for the skein algebras



Theorem 1 (B, 2020)

The scattering diagram ® is consistent.
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Theorem 1 (B, 2020)

The scattering diagram ® is consistent.

Theorem 2 (B, 2020)

There exists an isomorphism
©: .Agg — SkA(SOA)

such that
(Up) = T(7p)

for every p € B(Z).

A,
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Theorem 1 (B, 2020)

The scattering diagram ® is consistent.

Theorem 2 (B, 2020)

There exists an isomorphism
©: .Agg — SkA(SOA)

such that
(Up) = T(7p)

for every p € B(Z).

A,

Theorem 2 is proved by computations. The proof of Theorem 1 relies on
enumerative algebraic geometry.
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Enumerative geometry
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Enumerative geometry

@ Y': smooth projective surface over C, D normal crossings
anticanonical divisor.
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Enumerative geometry

@ Y': smooth projective surface over C, D normal crossings
anticanonical divisor.

@ Ng g: “counts" of genus g holomorphic curves in Y of class 3
intersecting D in a single point.
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Enumerative geometry

@ Y': smooth projective surface over C, D normal crossings
anticanonical divisor.

@ Ng g: “counts" of genus g holomorphic curves in Y of class 3
intersecting D in a single point.

@ Can use the numbers N 5 to cook up a consistent scattering diagram
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Enumerative geometry

@ Y': smooth projective surface over C, D normal crossings
anticanonical divisor.

@ Ng g: “counts" of genus g holomorphic curves in Y of class 3
intersecting D in a single point.

@ Can use the numbers N 5 to cook up a consistent scattering diagram

@ Y': smooth cubic surface, D a triangle of lines.
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Enumerative geometry

@ Y': smooth projective surface over C, D normal crossings
anticanonical divisor.

@ Ng g: “counts" of genus g holomorphic curves in Y of class 3
intersecting D in a single point.

@ Can use the numbers N 5 to cook up a consistent scattering diagram

@ Y': smooth cubic surface, D a triangle of lines.

Theorem 2 (B, 2020)

Q(Y,D) ~ @ 0
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Enumerative geometry

@ Y': smooth projective surface over C, D normal crossings
anticanonical divisor.

@ Ng g: “counts" of genus g holomorphic curves in Y of class 3
intersecting D in a single point.

@ Can use the numbers N 5 to cook up a consistent scattering diagram

@ Y': smooth cubic surface, D a triangle of lines.

Theorem 2 (B, 2020)

Q(Y,D) & %),

Simplest case: 27 — 3 =8 x 3 lines in Y intersecting D in a single point.
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Gauge theories from string/M-theory
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Gauge theories from string/M-theory

o 7: N =2 Nf =4 SU(2) gauge theory.
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Gauge theories from string/M-theory

o 7: N =2 Nf =4 SU(2) gauge theory.

@ Realization of 7 as a class S theory: N' = (2,0) 6d SCFT of class A;
compactified on Sg 4. Physical realization of the skein algebra
Ska(So4) as an algebra of supersymmetric line operators.
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Gauge theories from string/M-theory

e 7: N =2 Nf =4 SU(2) gauge theory.

@ Realization of 7 as a class S theory: N' = (2,0) 6d SCFT of class A;
compactified on Sg 4. Physical realization of the skein algebra
Ska(So4) as an algebra of supersymmetric line operators.

@ U: complement of a triangle of lines D in Y, hyperkdher manifold,
Dy elliptic fibration in rotated complex structure, X: elliptic fiber.
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Gauge theories from string/M-theory

e 7: N =2 Nf =4 SU(2) gauge theory.

@ Realization of 7 as a class S theory: N' = (2,0) 6d SCFT of class A;
compactified on Sg 4. Physical realization of the skein algebra
Ska(So4) as an algebra of supersymmetric line operators.

@ U: complement of a triangle of lines D in Y, hyperkdher manifold,
Dy elliptic fibration in rotated complex structure, X: elliptic fiber.

@ Realization of T from M-theory on R'3 x U x R3 with a M5-brane
on RY3 x Y. Physical realization of holomorphic curves in (Y, D) as
M2-branes determining the BPS spectrum of 7.
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Gauge theories from string/M-theory
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Gauge theories from string/M-theory

@ Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
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Gauge theories from string/M-theory

@ Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.

@ Scattering diagram © encoding the BPS spectrum of 7 (at large
values of u on the Coulomb branch).
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Gauge theories from string/M-theory

@ Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.

@ Scattering diagram © encoding the BPS spectrum of 7 (at large
values of u on the Coulomb branch).

@ Broken lines describing framed BPS states.
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Gauge theories from string/M-theory

o Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.

@ Scattering diagram © encoding the BPS spectrum of 7 (at large
values of u on the Coulomb branch).

@ Broken lines describing framed BPS states.

e BPS states of charges (m,0): 1 vector multiplet of charge (2,0), and
8 hypermultiplets of charge (1,0). The 8 hypermultiplets correspond

to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 =3 x 8 + 3).
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End

Thank you for your attention!
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