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The Polaron

An electron in an ionic crystal polarizes its surroundings.
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» 1937: The Frohlich Model,
> 1948: The Landau-Pekar equations.



The Frohlich Model
0V, = HW,,

H=—nA+ \/a/ &k (Gu(k)a + Gu(Rax) + / Pk 2l ar,

[ak,aj] =0(k —1) and [ak,a/] = [ag, a/] = 0.

Remarks:
> H = L2(R®) ® [@nz0l?(R?)*]

> G (k) = k|t e~ ¢ [2(R3) but e ™M can be defined via the
associated quadratic form,
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The Frohlich Model

i@twt - H\ljt7

H= —A+/d3k (Gx(k)az+ Gx(k)ak) +/d3kazak,

l[ak, a]] = a_25(k — 1) and [ak,a/] = [ak,a]] =0.

Remarks:
> H = L*(R%) @ [©nz0L*(R?)™]
> Gy(k) = |k| e > ¢ [2(R3) but =M can be defined via the

associated quadratic form,

P strong coupling units: x — a 1x, o — a‘1/2aa_1k, t — ot

» classical behavior of the phonon field for large a.



Pekar product states
Weyl operator: W(p) = e (¥)=a(¥)

W*(p)acW(p) = ax + a 2p(k) and  W*(p)agW(p) = ai +a~?p(k).
Pekar product state: For W = v ® W(a?p)Q we have
aV =p(k)V and ajV¥ = (p(k)+O(a 1))V,



Pekar product states
Weyl operator: W(p) = e (¥)=a(¥)

W (@)aW(p) = ak + o ?p(k) and W' (p)agW(p) = ak + ap(k).
Pekar product state: For W = v ® W(a?p)Q we have
aV =p(k)V and ajV¥ = (p(k)+O(a 1))V,
Ground state energy:
W HW) = [ Vol + 2Re [ ok (k7 (e u)el) + ol
= E(¥, ).
Rigorous results:

info (H) = inf E(h, ) + ca2 + o(a~?).
= e 29 (&™)

[Donsker, Varadhan '83], [Lieb, Thomas '97], [Frank, Seiringer '19].



The Landau-Pekar equations
Let (¢¢, pr) € HY(R3) x L?(R3) satisfy

{i8t¢t(X) = hye(x) (LP)
I'Oc28t<,0t(k) = oe(k) + Oy

with (10, po) € HY(R3) x L?(R3). Here, h, = —A + V,, and
Vo= 2Re [ i K e 7pk), () = (2n)*/2 kO (K)

Remarks:

» interaction between an electron and a classical phonon field,
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» well-posedness was shown by [Frank, Gang '15],

> large av = separation of scales.
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Goal: eMtypy @ W(a?p0)Q ~ 1 @ W(a?p:)Q

Main results:

Let @o € L2(R3, |k|*/2dk) such that e(pg) = infy (¥, hyyt) < 0 and ¥,
denote the unique positive ground state of h,, associated to e(yyp).

Let (1¢, p¢) be the solution of (LP) with initial value (14, o).

[L., Mitrouskas, Rademacher, Schlein, Seiringer (2020)]: Let Vo =
Yoo ® W(a2p0)Q, 7§ = Trr e HWg) (e MWo| and 4P (k, /) =
(emHtyy, axae MtWg)5. Then, there exist C, T > 0 such that for
all |t] < Ta?

|

’Ytel - Wt)(d’t‘ ”th - |‘Pt><90t’

< Ca~! and ‘ < C(a_1/4+a_2).
tr tr




Main results

Let ¢ € L?(R3) such that e(pg) < 0, 9, be the ground state of h,, and
(1+, p+) be the solution of (LP) with initial value (¢4, o).

Bogoliubov dynamics: For T € F and t < Ta?, we define
i@tTt - (N— At) Tt 3 TO - T

where A; is a quadratic Hamiltonian in Fock-space.
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Let ¢ € L?(R3) such that e(pg) < 0, 9, be the ground state of h,, and
(1+, p+) be the solution of (LP) with initial value (¢4, o).

Bogoliubov dynamics: For T € F and t < Ta?, we define
iatTt - (N— At) Tt 3 TO - T

where A; is a quadratic Hamiltonian in Fock-space.

[L., Mitrouskas, Rademacher, Schlein, Seiringer (2020)]: Let
(T,N°T)z < ca 10 Then, there exist C, T > 0 such that for all
It| < Ta?

He’M (Ve ® W(azgoo)'T‘) ek duw(W)y @ W(a?p)Te| < Ca™t.

Note: A; = <wgpt7 ¢(G) R@t¢(G')¢Wt>L2(R3) with Gor = 1- ‘w¢t><¢<ﬁ‘
and Rt = qut (hgot - e(got)) qSDt'



Remarks:

For To = Q and § > 0 sufficiently small 3C; > 0 s.t for t = Ja?

e—th (wtpo ® W(O[2Q00)Q) o e—ifot duw(U)d)t ® W(a2¢t)QW}[H > C5.




Remarks:

For To = Q and § > 0 sufficiently small 3C; > 0 s.t for t = Ja?

o iHt (w% ® W(a2<po)§2) _eily d”w(”)lf)t Q W(O‘2‘Pf)Q7WH > Gy.

Summary:

> The L.P.-equations approximate well the time evolution of the
one-particle reduced density matrices.

» For a norm approximation quantum fluctuations has to be taken
into account.

» Non-trivial variations of the phonon field happen over times of order

a?.

» The condition that the initial electron wave function is a ground

state of hy, is crucial.



Comparison with the literature

Vo= ® W(a2g00)f2, iazZt = h%q;t:

[Frank, Schlein '13] : e MWy ~ by @ W(a2p0)Q i
[Frank, Gang '15] : e Mty ~ Ve @ W(Oézsﬁt)Q or |t| < «,

Ve = PP @ W(a?oP)Q with (¥F o) minimizing the Pekar energy;
Voo = gy @ W(aPp0)Q with (1y,, o) as in the previous theorem:

[Griesemer '16] : e Mty p e*"E”t\U(pP for |t| < a?
[L.R.S.S. "19] : e MW~ b @ W(aPp:)Q ’
[Mitrouskas '20] : e*"Ht\U@p ~ e*’.Ht\Uwp for [t| ~ a?,

[L..M,R.S.,S. '20] : e*"H'fLIJW0 ~ e @ W(aPp) Ty for |t| < Ta2.
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Ingredients of the proof:
» Existence of a spectral gap,
» Adiabatic theorem,
» Duhamel’s formula,

» Bogoliubov dynamics.
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Ingredients of the proof:
» Existence of a spectral gap,
» Adiabatic theorem, 0
» Duhamel’s formula,

» Bogoliubov dynamics.

t
Tan2

t
hpy = hgpy — a2 /O ds Vi, .



Sketch of the proof

Ingredients of the proof:
> Existence of a spectral gap,
» Adiabatic theorem,

» Duhamel’'s formula,

» Bogoliubov dynamics.

L., Rademacher, Schlein, Seiringer (2019): Let (¢, p¢) be the solution
of (LP) with initial value (%4,, o). Then there exist C, T > 0 s.t.

.ot 2
H‘/’f il e(%)%’sz < Ca*(1+a 4tP) forall |t| < Ta?.

Figure: https://medium.com



Sketch of the proof

He—th (wtpo ® W(azapo)'T‘) _ e_ifot dsw(s),l/}t ® W(a280t)Tt

< COz72 + Hefth (wtpo ® W(OZZQO())T) _ e*’.fot dsw(S)Jre(tps)d)% ® W(azgot)'T‘t

< Ca?+ ||& — Yy, @ Te||, where

& = eifot ds w(s)+e(ps) W*(a2¢t)e_th (djtpo ® W(azgao)T)
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6(0:Gx)
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Sketch of the proof

He—th (w% ® W(OZZLPO)T) _ e_ifot dsw(s),l/]t ® W(a280t)Tt

<Ca 24 Hefth (1%0 ® W(a2<p0)T) it dsw(s)+e(ws)¢% © W(a2p) T

< Ca 2+ [|& — by, @ Te||, where

& = eifot ds w(s)+e(ps) W*(ath)e_th ('(/)Lpo ® W(a2@0)T)

Duhamel’s formula: ||§; — ¥y, ® Te||> = —2Re fot ds %(fs, Yo, @ Ts).

> i0s&s = (hy, — e(0s) + D(Gx) — (s, p(Ge)s) +N)&s
#(05Gx)
> qwsiasgs = (ys (h%Ds - 6(905) + ¢(55Gx) +N)§s ~ 1+ a~l + a=?

» The time derivatives of all other quantities are of order a 2.

> qcpsfs = Rs(ias - ¢(5SGX) _N)gs with Ry = qsos(hcps - e(gos))_lq% -




Related results

Adiabatic theorem:
[Frank '17], [Frank, Gang '19].

Classical limit of quantum fields:

[Davies '79], [Ginibre, Velo '79] [Hiroshima '98], [Teufel '02],

[Ginibre, Nironi, Velo '06], [Falconi '12], [Ammari, Falconi '16], [L., Pickl '16],
[Correggi, Falconi '17], [Corregi, Falconi, Olivieri '18], [L., Pickl '18], [L., Petrat
'18], [Carlone, Correggi, Falconi, Olivieri '19], [L., Mitrouskas, Seiringer '20].

Effective mass (m ~ o*):
[Landau, Pekar '48], [Feynman '54], [Lieb, Seiringer '14], [Lieb, Seiringer '19],
[Dybalski, Spohn '19].



Thank you for your attention!



Simple example
Let f € C}(R,R), c,d,e € Rwithc>0and w=c+a 1d+a e

t .
/ ds f(a2s)e /s
0

t
d .
= Cl/o ds f(a™2s) (IE —ald - of2e) e 'w*

t .
=bt +0O(a%t) - oz_lc_ld/ ds f(a2s)e /s
0

t
d .
=b.t.+ O(a™%t) — ozlc2d/0 ds f(a™?s) (IE —atd - afze) e '“*
=b.t. + O(a?t).
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