Existence and Uniqueness of Exact WKB Solutions of Schrödinger Equations arXiv:2008.06492

Nikita Nikolaev

9 September 2020

7th SwissMAP General Meeting

Nikita Nikolaev | Existence of Exact WKB Solutions | 09.09.2020

Motivation | The Schrödinger Equation

The One-Dimensional Stationary Schrödinger Equation

$$\hbar^2 \psi''(x) - q(x)\psi(x) = 0$$

- potential q(x) = V(x) E
- rarely can be solved in closed form (harmonic oscillator, hydrogen atom, ...)
- $\bullet \ \Rightarrow need \ approximation \ methods$
- want solutions that 'know' about the classical limit

The WKB Approximation Method

Origins: Liouville, Green (1837); Jeffreys (1923); Wentzel, Kramers, Brillouin (1926)...

Basic Idea: solve for ψ asymptotically as $\hbar \rightarrow 0$

$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar)\psi(x,\hbar) = 0$

Method: 1 solve the leading-order equation (i.e., for ħ = 0)
2 add ħ-dependent corrections to get the true answer for ħ ≠ 0

- This is a problem in singular perturbation theory
- Major difficulty: step 2 is very tricky!

The WKB Approximation Method

Origins: Liouville, Green (1837); Jeffreys (1923); Wentzel, Kramers, Brillouin (1926)...

Basic Idea: solve for ψ asymptotically as $\hbar \rightarrow 0$

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar)\psi(x,\hbar) = 0$$

- Method: 1 solve the leading-order equation (i.e., for ħ = 0)
 2 add ħ-dependent corrections to get the true answer for ħ ≠ 0
- This is a problem in singular perturbation theory
- Major difficulty: step 2 is very tricky!

The WKB Approximation Method

Origins: Liouville, Green (1837); Jeffreys (1923); Wentzel, Kramers, Brillouin (1926)...

Basic Idea: solve for ψ asymptotically as $\hbar \to 0$

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar)\psi(x,\hbar) = 0$$

- Method: 1 solve the leading-order equation (i.e., for ħ = 0)
 2 add ħ-dependent corrections to get the true answer for ħ ≠ 0
- This is a problem in *singular perturbation theory*
- Major difficulty: step 2 is very tricky!

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar) \psi(x,\hbar) = 0$$

1 Write down the *WKB ansatz*: $\psi(x,\hbar) = \exp\left(-\int_{-\pi}^{x} s(x',\hbar) \, dx'/\hbar\right)$

3 Solve the Riccati equation in \hbar -power series:

$$\begin{array}{c|c} 0 & s_0^2 = q_0 \\ 1 & \partial_x s_0 + 2s_0 s_1 = q_1 \\ 2 & \partial_x s_1 + 2s_0 s_2 + s_1^2 = q_2 \\ \vdots \end{array}$$

No differential equations!

 \Rightarrow two formal solutions \hat{s}_{\pm} with $s_0^{\pm} := \pm \sqrt{q_0}$

 $\widehat{s}(x,\hbar) = \sum_{k=1}^{\infty} s_k(x)\hbar^k$

Get two formal WKB solutions:

$$\widehat{\psi}_{\pm}(x,\hbar) := \exp\left(-\int_{x_*}^x \widehat{s}_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Major problem: \hat{s}_{\pm} are generically divergent!

Nikita Nikolaev Existence of Exact WKB Solutions 09.09.2020

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar) \psi(x,\hbar) = 0$$

1 Write down the *WKB ansatz*: $\psi(x,\hbar) = \exp\left(-\int_{x}^{x} s(x',\hbar) \, \mathrm{d}x'/\hbar\right)$

2 Get a singularly perturbed Riccati equation

3 Solve the Riccati equation in \hbar -power series

$$\hbar^{0} | s_{0}^{2} = q_{0}$$

$$\hbar^{1} | \partial_{x}s_{0} + 2s_{0}s_{1} = q_{1}$$

$$\hbar^{2} | \partial_{x}s_{1} + 2s_{0}s_{2} + s_{1}^{2} = q_{2}$$

$$\vdots$$

No differential equations!

 \Rightarrow two formal solutions \hat{s}_{\pm} with $s_0^{\pm} := \pm \sqrt{q_0}$

 $\hbar \partial_x s = s^2 - a$

 $\widehat{s}(x,\hbar) = \sum_{k=1}^{\infty} s_k(x)\hbar^k$

Get two formal WKB solutions:

$$\widehat{\psi}_{\pm}(x,\hbar) := \exp\left(-\int_{x_*}^x \widehat{s}_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Major problem: \hat{s}_{\pm} are generically divergent!

Nikita Nikolaev | Existence of Exact WKB Solutions | 09.09.2020

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar) \psi(x,\hbar) = 0$$

1 Write down the *WKB ansatz*: $\psi(x,\hbar) = \exp\left(-\int_{x}^{x} s(x',\hbar) \, \mathrm{d}x'/\hbar\right)$

- **2** Get a singularly perturbed Riccati equation
- **3** Solve the Riccati equation in \hbar -power series:

$$\hbar \partial_x s = s^2 - q$$
$$\widehat{s}(x,\hbar) = \sum_{k=0}^{\infty} s_k(x)\hbar^k$$

 $\hbar^{0} | s_{0}^{2} = q_{0}$ $\hbar^{1} | \partial_{x}s_{0} + 2s_{0}s_{1} = q_{1}$ $\hbar^{2} | \partial_{x}s_{1} + 2s_{0}s_{2} + s_{1}^{2} = q_{2}$ \vdots

 \Rightarrow two formal solutions \hat{s}_{\pm} with $s_0^{\pm} := \pm$

4 Get two *formal WKB solutions*:

$$\widehat{\psi}_{\pm}(x,\hbar) := \exp\left(-\int_{x_*}^x \widehat{s}_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Major problem: \hat{s}_{\pm} are generically divergent!

Nikita Nikolaev Existence of Exact WKB Solutions 09.09.2020

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar) \psi(x,\hbar) = 0$$

1 Write down the *WKB ansatz*: $\psi(x,\hbar) = \exp\left(-\int_{x}^{a} s(x',\hbar) \, \mathrm{d}x'/\hbar\right)$

- ② Get a singularly perturbed Riccati equation
- **3** Solve the Riccati equation in \hbar -power series:

$$\begin{split} \hbar^0 \mid s_0^2 &= q_0 \\ \hbar^1 \mid \partial_x s_0 + 2s_0 s_1 &= q_1 \\ \hbar^2 \mid \partial_x s_1 + 2s_0 s_2 + s_1^2 &= q_2 \\ \vdots \\ \text{No differential equations!} \end{split}$$

 $\Rightarrow \text{ two formal solutions } \hat{s}_{\pm} \text{ with } s_0^{\pm} := \pm \sqrt{q_0}$ Get two *formal WKB solutions*: $\widehat{q}_{\psi} (q, b) := \exp \left(- \int_{-\infty}^{x} \widehat{q}_{\psi} (q', b) dq'/b \right)$

 $\hbar \partial_x s = s^2 - a$

 $\widehat{s}(x,\hbar) = \sum_{k=1}^{\infty} s_k(x)\hbar^k$

Major problem: \hat{s}_{\pm} are generically divergent!

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar) \psi(x,\hbar) = 0$$

1 Write down the *WKB ansatz*: $\psi(x,\hbar) = \exp\left(-\int_{x}^{\pi} s(x',\hbar) \, \mathrm{d}x'/\hbar\right)$

- **2** Get a singularly perturbed Riccati equation
- **3** Solve the Riccati equation in \hbar -power series:

$$\begin{split} \hbar^{0} \mid s_{0}^{2} &= q_{0} \\ \hbar^{1} \mid \partial_{x}s_{0} + 2s_{0}s_{1} &= q_{1} \\ \hbar^{2} \mid \partial_{x}s_{1} + 2s_{0}s_{2} + s_{1}^{2} &= q_{2} \\ &\vdots \\ \text{No differential equations!} \end{split}$$

 \Rightarrow two formal solutions \hat{s}_{\pm} with $s_0^{\pm} := \pm \sqrt{q_0}$

 $\hbar \partial_x s = s^2 - a$

 $\widehat{s}(x,\hbar) = \sum_{k=1}^{\infty} s_k(x)\hbar^k$

4 Get two formal WKB solutions:

$$\widehat{\psi}_{\pm}(x,\hbar) := \exp\left(-\int_{x_*}^x \widehat{s}_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Major problem: \hat{s}_{\pm} are generically divergent!

$$\hbar^2 \partial_x^2 \psi(x,\hbar) - q(x,\hbar) \psi(x,\hbar) = 0$$

1 Write down the *WKB ansatz*: $\psi(x,\hbar) = \exp\left(-\int_{x}^{\pi} s(x',\hbar) \, \mathrm{d}x'/\hbar\right)$

- **2** Get a singularly perturbed Riccati equation
- **3** Solve the Riccati equation in \hbar -power series:

$$\begin{split} \hbar^0 \mid s_0^2 &= q_0 \\ \hbar^1 \mid \partial_x s_0 + 2s_0 s_1 &= q_1 \\ \hbar^2 \mid \partial_x s_1 + 2s_0 s_2 + s_1^2 &= q_2 \\ &\vdots \\ \text{No differential equations!} \end{split}$$

 \Rightarrow two formal solutions \hat{s}_{\pm} with $s_0^{\pm} := \pm \sqrt{q_0}$

 $\hbar \partial_r s = s^2 - q$

 $\widehat{s}(x,\hbar) = \sum_{k=1}^{\infty} s_k(x)\hbar^k$

4 Get two *formal WKB solutions*:

$$\widehat{\psi}_{\pm}(x,\hbar) := \exp\left(-\int_{x_*}^x \widehat{s}_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Major problem: \hat{s}_{\pm} are generically divergent!

1 Formal analysis: treat $\widehat{\psi}_{\pm}$ as a formal object

2 WKB approximation: truncate the series \hat{s}_{\pm} ; for example,

$$\psi_{\pm}^{(0)}(x,\hbar) := \exp\left(-\int_{x_*}^x \pm \sqrt{q_0(x')} \,\mathrm{d}x'/\hbar\right)$$

3 Exact WKB analysis: interpret \hat{s}_{\pm} as asymptotic expansions as $\hbar \to 0$ of true analytic solutions s_{\pm} , and get *exact WKB solutions*:

$$\psi_{\pm}(x,\hbar) := \exp\left(-\int\limits_{x_*}^x s_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Then: $\psi_{\pm} \simeq \hat{\psi}_{\pm}$ as $\hbar \to 0$ and $\psi_{\pm}^{(0)}$ is the leading-order asymptotic behaviour OR: $s_{\pm} \simeq \hat{s}_{\pm}$ as $\hbar \to 0$ and $s_0^{\pm} = \pm \sqrt{q_0}$ is the leading-order asymptotics

- **1** Formal analysis: treat $\widehat{\psi}_{\pm}$ as a formal object
- **2** WKB approximation: truncate the series \hat{s}_{\pm} ; for example,

$$\psi_{\pm}^{(0)}(x,\hbar) := \exp\left(-\int_{x_*}^x \pm \sqrt{q_0(x')} \,\mathrm{d}x'/\hbar\right)$$

3 Exact WKB analysis: interpret \hat{s}_{\pm} as asymptotic expansions as $\hbar \to 0$ of true analytic solutions s_{\pm} , and get *exact WKB solutions*:

$$\psi_{\pm}(x,\hbar) := \exp\left(-\int\limits_{x_*}^x s_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Then: $\psi_{\pm} \simeq \hat{\psi}_{\pm}$ as $\hbar \to 0$ and $\psi_{\pm}^{(0)}$ is the leading-order asymptotic behaviour OR: $s_{\pm} \simeq \hat{s}_{\pm}$ as $\hbar \to 0$ and $s_0^{\pm} = \pm \sqrt{q_0}$ is the leading-order asymptotics

- **1** Formal analysis: treat $\widehat{\psi}_{\pm}$ as a formal object
- **2** WKB approximation: truncate the series \hat{s}_{\pm} ; for example,

$$\psi_{\pm}^{(0)}(x,\hbar) := \exp\left(-\int_{x_*}^x \pm \sqrt{q_0(x')} \,\mathrm{d}x'/\hbar\right)$$

3 Exact WKB analysis: interpret \hat{s}_{\pm} as asymptotic expansions as $\hbar \to 0$ of true analytic solutions s_{\pm} , and get *exact WKB solutions*:

$$\psi_{\pm}(x,\hbar) := \exp\left(-\int\limits_{x_*}^x s_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Then: $\psi_{\pm} \simeq \hat{\psi}_{\pm}$ as $\hbar \to 0$ and $\psi_{\pm}^{(0)}$ is the leading-order asymptotic behaviour OR: $s_{\pm} \simeq \hat{s}_{\pm}$ as $\hbar \to 0$ and $s_0^{\pm} = \pm \sqrt{q_0}$ is the leading-order asymptotics

- **1** Formal analysis: treat $\widehat{\psi}_{\pm}$ as a formal object
- **2** WKB approximation: truncate the series \hat{s}_{\pm} ; for example,

$$\psi_{\pm}^{(0)}(x,\hbar) := \exp\left(-\int_{x_*}^x \pm \sqrt{q_0(x')} \,\mathrm{d}x'/\hbar\right)$$

3 Exact WKB analysis: interpret \hat{s}_{\pm} as asymptotic expansions as $\hbar \to 0$ of true analytic solutions s_{\pm} , and get *exact WKB solutions*:

$$\psi_{\pm}(x,\hbar) := \exp\left(-\int\limits_{x_*}^x s_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Then: $\psi_{\pm} \simeq \hat{\psi}_{\pm}$ as $\hbar \to 0$ and $\psi_{\pm}^{(0)}$ is the leading-order asymptotic behaviour OR: $s_{\pm} \simeq \hat{s}_{\pm}$ as $\hbar \to 0$ and $s_0^{\pm} = \pm \sqrt{q_0}$ is the leading-order asymptotics

- **1** Formal analysis: treat $\widehat{\psi}_{\pm}$ as a formal object
- **2** WKB approximation: truncate the series \hat{s}_{\pm} ; for example,

$$\psi_{\pm}^{(0)}(x,\hbar) := \exp\left(-\int_{x_*}^x \pm \sqrt{q_0(x')} \,\mathrm{d}x'/\hbar\right)$$

3 Exact WKB analysis: interpret \hat{s}_{\pm} as asymptotic expansions as $\hbar \to 0$ of true analytic solutions s_{\pm} , and get *exact WKB solutions*:

$$\psi_{\pm}(x,\hbar) := \exp\left(-\int\limits_{x_*}^x s_{\pm}(x',\hbar) \,\mathrm{d}x'/\hbar\right)$$

Then: $\psi_{\pm} \simeq \hat{\psi}_{\pm}$ as $\hbar \to 0$ and $\psi_{\pm}^{(0)}$ is the leading-order asymptotic behaviour OR: $s_{\pm} \simeq \hat{s}_{\pm}$ as $\hbar \to 0$ and $s_0^{\pm} = \pm \sqrt{q_0}$ is the leading-order asymptotics

Origins: Voros (1983), Silverstone (1985), Aoki, Kawai, Takei (1991), Delabaere, Dillinger, Pham (1993), Koike, Schäfke, ...

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

 $\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$

where p, q are convergent \hbar -power series with meromorphic coefficients:

$$p(x,\hbar) = \sum_{n=0}^{\infty} p_n(x)\hbar^n$$
 and $q(x,\hbar) = \sum_{n=0}^{\infty} q_n(x)\hbar^n$

(More generally: p, q admit locally uniform Gevrey asymptotic expansions as $\hbar \rightarrow 0$ uniformly in a halfplane)

Origins: Voros (1983), Silverstone (1985), Aoki, Kawai, Takei (1991), Delabaere, Dillinger, Pham (1993), Koike, Schäfke, ...

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

where p, q are convergent \hbar -power series with meromorphic coefficients:

$$p(x,\hbar) = \sum_{n=0}^{\infty} p_n(x)\hbar^n$$
 and $q(x,\hbar) = \sum_{n=0}^{\infty} q_n(x)\hbar^n$

(More generally: p, q admit locally uniform Gevrey asymptotic expansions as $\hbar \rightarrow 0$ uniformly in a halfplane)

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

- **3** Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.
- **4** Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

3 Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.

4 Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

- **3** Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.
- **4** Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

1 Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

3 Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.

4 Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: \cup is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on \cup

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar) \simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

1 Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

3 Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.

4 Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

- **3** Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.
- **4** Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar) \simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

① Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

3 Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.

4 Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

Therefore: fixing a basepoint $x_* \in U$,

there is a unique basis of exact WKB solutions ψ_{\pm} on U

1 Consider: general meromorphic singularly perturbed 2nd-order linear ODE

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 Riccati equation: $\hbar \partial_x s = s^2 + ps + q$

- **3** Let: s_0^{\pm} leading-order solutions: $(s_0^{\pm})^2 + p_0 s_0^{\pm} + q_0 = 0$.
- **4** Let: \hat{s}_{\pm} be the two formal solutions with leading-orders s_0^{\pm}

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

Therefore: for $x_* \in U$, there is a unique basis of exact WKB solutions ψ_{\pm} on U **Furthermore:** get integral representation as the Laplace transform

$$s_{\pm}(x,\hbar) = s_0^{\pm}(x) + \int_0 e^{-\xi/\hbar} \sigma_{\pm}(x,\xi) \,\mathrm{d}\xi$$

$$\sigma_{\pm}(x,\xi) := s_{1}^{\pm}(x) + \sum_{k=0}^{\infty} \int_{0}^{\xi} \phi_{k}^{\pm}(x,t) \, \mathrm{d}t \quad \text{and} \quad I_{\pm} \big[\omega \big](x,\xi) := \int_{0}^{\xi} \omega \big(x_{\pm}(t), \xi - t \big) \, \mathrm{d}t$$
$$\phi_{k}^{\pm}(x,\xi) := I_{\pm} \left[b_{1}\phi_{k-1}^{+} + \beta_{1} * \phi_{k-2}^{\pm} + \sum_{\substack{i,j \ge 0 \\ i+j=k-2}} b_{2}\phi_{i}^{\pm} * \phi_{j}^{\pm} + \sum_{\substack{i,j \ge 0 \\ i+j=k-3}} \beta_{2} * \phi_{i}^{\pm} * \phi_{j}^{\pm} \right]$$

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

Therefore: for $x_* \in U$, there is a unique basis of exact WKB solutions ψ_{\pm} on U **Furthermore:** get integral representation as the Laplace transform

$$s_{\pm}(x,\hbar) = s_0^{\pm}(x) + \int_0^{\infty} e^{-\xi/\hbar} \sigma_{\pm}(x,\xi) \,\mathrm{d}\xi$$

 ∞

$$\sigma_{\pm}(x,\xi) := s_{1}^{\pm}(x) + \sum_{k=0}^{\infty} \int_{0}^{\xi} \phi_{k}^{\pm}(x,t) \, \mathrm{d}t \quad \text{and} \quad I_{\pm} \left[\omega \right](x,\xi) := \int_{0}^{\xi} \omega \left(x_{\pm}(t), \xi - t \right) \, \mathrm{d}t$$
$$\phi_{k}^{\pm}(x,\xi) := I_{\pm} \left[b_{1}\phi_{k-1}^{+} + \beta_{1} * \phi_{k-2}^{\pm} + \sum_{\substack{i,j \ge 0 \\ i+j=k-2}} b_{2}\phi_{i}^{\pm} * \phi_{j}^{\pm} + \sum_{\substack{i,j \ge 0 \\ i+j=k-3}} \beta_{2} * \phi_{i}^{\pm} * \phi_{j}^{\pm} \right]$$

Theorem (Existence&Uniqueness of Exact WKB Solutions [N'2020]) Let: $U \subset \mathbb{C}_x$ simply connected domain with nonvanishing $\Delta := p_0^2 - 4q_0$. Assume: U is complete under the flow of real analytic vector field $\operatorname{Re}\left(\frac{1}{\sqrt{\Delta}}\partial_x\right)$. Assume: p, q are bounded by $\sqrt{\Delta}$ on U

Then: there are exactly two analytic solutions s_{\pm} such that for all $x \in U$,

 $s_{\pm}(x,\hbar)\simeq \widehat{s}_{\pm}(x,\hbar)$ as $\hbar \to 0$ uniformly in the right halfplane

Therefore: for $x_* \in U$, there is a unique basis of exact WKB solutions ψ_{\pm} on U **Furthermore:** get integral representation as the Laplace transform

$$s_{\pm}(x,\hbar) = s_0^{\pm}(x) + \int_0 e^{-\xi/\hbar} \sigma_{\pm}(x,\xi) \,\mathrm{d}\xi$$

 ∞

$$\begin{split} \sigma_{\pm}(x,\xi) &:= s_{1}^{\pm}(x) + \sum_{k=0}^{\infty} \int_{0}^{\xi} \phi_{k}^{\pm}(x,t) \, \mathrm{d}t \quad \text{and} \quad I_{\pm} \big[\, \omega \, \big](x,\xi) &:= \int_{0}^{\xi} \omega \big(x_{\pm}(t), \xi - t \big) \, \mathrm{d}t \\ \phi_{k}^{\pm}(x,\xi) &:= I_{\pm} \left[b_{1} \phi_{k-1}^{+} + \beta_{1} * \phi_{k-2}^{\pm} + \sum_{\substack{i,j \ge 0 \\ i+j=k-2}} b_{2} \phi_{i}^{\pm} * \phi_{j}^{\pm} + \sum_{\substack{i,j \ge 0 \\ i+j=k-3}} \beta_{2} * \phi_{i}^{\pm} * \phi_{j}^{\pm} \right] \end{split}$$

" Thank you for your attention! "

Nikita Nikolaev Existence of Exact WKB Solutions 09.09.2020