What is the probability that a (sparse) polynomial of degree d over a finite field is irreducible?

Kaloyan Slavov

ETH Zürich

September 8, 2020

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large q).

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large q).
Question (Gauss)
What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large $\left.q\right)$.

Question (Gauss)

What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

d	total	reducible types	\# reducible	Prob - reducible	Prob - irred.
1	q				
2	q^{2}				
3	q^{3}				

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large $\left.q\right)$.

Question (Gauss)

What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

d	total	reducible types	\# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^{2}				
3	q^{3}				

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large q).

Question (Gauss)

What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

d	total	reducible types	\# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^{2}	$(T+a)(T+b)$			
3	q^{3}				

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large $\left.q\right)$.

Question (Gauss)

What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

d	total	reducible types	\# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^{2}	$(T+a)(T+b)$	$\approx\binom{q}{2}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^{3}				

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field (large q).

Question (Gauss)

What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

d	total	reducible types	$\#$ reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^{2}	$(T+a)(T+b)$	$\approx\binom{q}{2}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^{3}	$(T+a)(T+b)(T+c)$ $(T+a)\left(T^{2}+b T+c\right)$			

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field $(\operatorname{large} q)$.

Question (Gauss)

What is the probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible?

d	total	reducible types	$\#$ reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^{2}	$(T+a)(T+b)$	$\approx\binom{q}{2}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^{3}	$(T+a)(T+b)(T+c)$ $(T+a)\left(T^{2}+b T+c\right)$	$\approx\binom{q}{3}+q \cdot \frac{q^{2}}{2}$	$\approx \frac{1}{6}+\frac{1}{2}=\frac{2}{3}$	$\approx \frac{1}{3}$

Let $d \geq 1$ and let \mathbb{F}_{q} be a finite field $(\operatorname{large} q)$.

Theorem (Gauss)

The probability that a random polynomial

$$
T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} \in \mathbb{F}_{q}[T]
$$

is irreducible is $\approx 1 / d$.

d	total	reducible types	$\#$ reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^{2}	$(T+a)(T+b)$	$\approx\binom{q}{2}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^{3}	$(T+a)(T+b)(T+c)$ $(T+a)\left(T^{2}+b T+c\right)$	$\approx\binom{q}{3}+q \cdot \frac{q^{2}}{2}$	$\approx \frac{1}{6}+\frac{1}{2}=\frac{2}{3}$	$\approx \frac{1}{3}$

Question

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right) \approx 1 / d ?
$$

Question

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right) \approx 1 / d ?
$$

Usually, yes.
Prob $\left(T^{5}+T^{4}-2 T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{11}[T]\right)$

Question

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right) \approx 1 / d ?
$$

Usually, yes.
$\operatorname{Prob}\left(T^{5}+T^{4}-2 T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{11}[T]\right)=34 / 11^{2}=0.202 \approx 0.2$

Question

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right) \approx 1 / d ?
$$

Usually, yes.
$\operatorname{Prob}\left(T^{5}+T^{4}-2 T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{11}[T]\right)=34 / 11^{2}=0.202 \approx 0.2$

But sometimes, no.

Question

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right) \approx 1 / d ?
$$

Usually, yes.
$\operatorname{Prob}\left(T^{5}+T^{4}-2 T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{11}[T]\right)=34 / 11^{2}=0.202 \approx 0.2$

But sometimes, no.

$$
\operatorname{Prob}\left(T^{7}+s T+b \text { is irreducible in } \mathbb{F}_{2^{10}}[T]\right)=0.29 \ldots \not \approx 0.14 \quad \boldsymbol{x}
$$

Question

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right) \approx 1 / d ?
$$

Usually, yes.
$\operatorname{Prob}\left(T^{5}+T^{4}-2 T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{11}[T]\right)=34 / 11^{2}=0.202 \approx 0.2$

But sometimes, no.
$\operatorname{Prob}\left(T^{7}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{2^{10}}[T]\right)=0.29 \ldots \not \approx 0.14 \quad x$
$\operatorname{Prob}\left(T^{27}-T^{9}+T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{3^{20}}[T]\right)=0 \not \approx 1 / 27 \quad \boldsymbol{x}$

Theorem (Bank, Bary-Soroker, Rosenzweig'2015)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d.
Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Theorem (Bank, Bary-Soroker, Rosenzweig'2015)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $(d(d-1), q)=1$. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right) .
$$

Theorem (Bank, Bary-Soroker, Rosenzweig' 2015)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $(d(d-1), q)=1$. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $f^{\prime \prime} \neq 0$ and $(q, d)=1$.

Theorem (Bank, Bary-Soroker, Rosenzweig' 2015)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $(d(d-1), q)=1$. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $f^{\prime \prime} \neq 0$ and $(q, d)=1$. Then for all but $O_{d}(1)$ values of $s \in \mathbb{F}_{q}$, the polynomial $f(T)+s T$ is a Morse polynomial;

Theorem (Bank, Bary-Soroker, Rosenzweig' 2015)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $(d(d-1), q)=1$. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $f^{\prime \prime} \neq 0$ and $(q, d)=1$. Then for all but $O_{d}(1)$ values of $s \in \mathbb{F}_{q}$, the polynomial $f(T)+s T$ is a Morse polynomial; as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Theorem (Bank, Bary-Soroker, Rosenzweig' 2015)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $(d(d-1), q)=1$. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $f^{\prime \prime} \neq 0$ and $(q, d)=1$. Then for all but $O_{d}(1)$ values of $s \in \mathbb{F}_{q}$, the polynomial $f(T)+s T$ is a Morse polynomial; as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

For $f(T)=\sum a_{i} T^{i}$, define $D^{2} f=\sum a_{i}\binom{i}{2} T^{i-2} \quad$ (second Hasse derivative).

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \tilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \widetilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose

Then for all but $d^{2}-d-1$ values of $s \in \mathbb{F}_{q}$: as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \tilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose

Then for all but $d^{2}-d-1$ values of $s \in \mathbb{F}_{q}$: as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Corollary (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be a polynomial as above. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \tilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $\operatorname{deg} f^{\prime} \geq 1$,

Then for all but $d^{2}-d-1$ values of $s \in \mathbb{F}_{q}$: as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Corollary (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be a polynomial as above. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \widetilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $\operatorname{deg} f^{\prime} \geq 1, D^{2} f \neq 0$, and

Then for all but $d^{2}-d-1$ values of $s \in \mathbb{F}_{q}$: as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Corollary (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be a polynomial as above. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \widetilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $\operatorname{deg} f^{\prime} \geq 1, D^{2} f \neq 0$, and

$$
\operatorname{gcd}\left(\widetilde{f}(x, y)-f^{\prime}(x), \widetilde{f^{\prime}}(x, y)\right)=(x-y)^{t} \quad \text { in } \quad k[x, y], \quad \text { for some } t \geq 0 .
$$

Then for all but $d^{2}-d-1$ values of $s \in \mathbb{F}_{q}$: as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Corollary (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be a polynomial as above. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

For $f \in \mathbb{F}_{q}[T]$, write $f(x)-f(y)=(x-y) \tilde{f}(x, y)$ in $\mathbb{F}_{q}[x, y]$.

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $\operatorname{deg} f^{\prime} \geq 1, D^{2} f \neq 0$, and

$$
\operatorname{gcd}\left(\widetilde{f}(x, y)-f^{\prime}(x), \widetilde{f^{\prime}}(x, y)\right)=(x-y)^{t} \quad \text { in } \quad k[x, y], \quad \text { for some } t \geq 0 .
$$

Then for all but $d^{2}-d-1$ values of $s \in \mathbb{F}_{q}$: as $b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

Corollary (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be a polynomial as above. Then as $s, b \in \mathbb{F}_{q}$,

$$
\operatorname{Prob}\left(f(T)+s T+b \text { is irreducible in } \mathbb{F}_{q}[T]\right)=1 / d+O_{d}\left(q^{-1 / 2}\right)
$$

E.g. $\quad \operatorname{Prob}\left(T^{12}+T^{3}+s T+b\right.$ is irreducible in $\left.\mathbb{F}_{2^{n}}[T]\right) \approx 1 / 12$.

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.

φ_{s} has geometric monodromy S_{d}
\Downarrow [Chebotarev]

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.

$$
\Downarrow
$$

φ_{s} has geometric monodromy S_{d}
\Downarrow [Chebotarev]

$$
\frac{\#\left\{b \in \mathbb{F}_{q} \mid f(T)+s T+b \text { is irreducible }\right\}}{q}=\frac{\#\left\{\pi \in S_{d} \mid \pi \text { is a cycle }\right\}}{\# S_{d}}+O\left(q^{-1 / 2}\right)
$$

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.

$$
\Downarrow
$$

φ_{s} has geometric monodromy S_{d}

$$
\Downarrow \text { [Chebotarev] }
$$

$$
\begin{aligned}
\frac{\#\left\{b \in \mathbb{F}_{q} \mid f(T)+s T+b \text { is irreducible }\right\}}{q} & =\frac{\#\left\{\pi \in S_{d} \mid \pi \text { is a cycle }\right\}}{\# S_{d}}+O\left(q^{-1 / 2}\right) \\
& =1 / d+O\left(q^{-1 / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.
1)
2)
\Downarrow [Ballico, Hefez' 1986]
φ_{s} has geometric monodromy S_{d}
\Downarrow [Chebotarev]

$$
\begin{aligned}
\frac{\#\left\{b \in \mathbb{F}_{q} \mid f(T)+s T+b \text { is irreducible }\right\}}{q} & =\frac{\#\left\{\pi \in S_{d} \mid \pi \text { is a cycle }\right\}}{\# S_{d}}+O\left(q^{-1 / 2}\right) \\
& =1 / d+O\left(q^{-1 / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.

1) $\exists b \in \overline{\mathbb{F}_{q}}$ such that $f(T)+s T+b=(T-\alpha)^{2}\left(T-\beta_{1}\right) \ldots\left(T-\beta_{d-2}\right)$ in $\overline{\mathbb{F}_{q}}[T]$.
2)

\Downarrow [Ballico, Hefez' 1986]
φ_{s} has geometric monodromy S_{d}
\Downarrow [Chebotarev]

$$
\begin{aligned}
\frac{\#\left\{b \in \mathbb{F}_{q} \mid f(T)+s T+b \text { is irreducible }\right\}}{q} & =\frac{\#\left\{\pi \in S_{d} \mid \pi \text { is a cycle }\right\}}{\# S_{d}}+O\left(q^{-1 / 2}\right) \\
& =1 / d+O\left(q^{-1 / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{s}: \mathbb{A}^{1} & \longrightarrow \mathbb{A}^{1} \\
t & \longmapsto-f(t)-s t
\end{aligned}
$$

whose fiber over b is the set of roots of $f(T)+s T+b$.

1) $\exists b \in \overline{\overline{\mathbb{F}_{q}}}$ such that $f(T)+s T+b=(T-\alpha)^{2}\left(T-\beta_{1}\right) \ldots\left(T-\beta_{d-2}\right)$ in $\overline{\mathbb{F}_{q}}[T]$.
2) $\widetilde{f}(x, y)+s$ is irreducible over $\overline{\mathbb{F}_{q}}$.
\Downarrow [Ballico, Hefez' 1986]
φ_{s} has geometric monodromy S_{d}
\Downarrow [Chebotarev]

$$
\begin{aligned}
\frac{\#\left\{b \in \mathbb{F}_{q} \mid f(T)+s T+b \text { is irreducible }\right\}}{q} & =\frac{\#\left\{\pi \in S_{d} \mid \pi \text { is a cycle }\right\}}{\# S_{d}}+O\left(q^{-1 / 2}\right) \\
& =1 / d+O\left(q^{-1 / 2}\right)
\end{aligned}
$$

Let k be an algebraically closed field.

Let k be an algebraically closed field.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then $g(x, y)+s$ is irreducible for all but $\operatorname{deg} g-1$ values of s

Let k be an algebraically closed field.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then $g(x, y)+s$ is irreducible for all but $\operatorname{deg} g-1$ values of s

Note: $(x+2 y)^{4}+3(x+2 y)^{2}+(x+2 y)+s \in k[x, y]$ always reducible.

Let k be an algebraically closed field.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then $g(x, y)+s$ is irreducible for all but $\operatorname{deg} g-1$ values of s, unless g is of the form $Q(h(x, y))$ with $\operatorname{deg} Q>1$.

Note: $(x+2 y)^{4}+3(x+2 y)^{2}+(x+2 y)+s \in k[x, y]$ always reducible.

Let k be an algebraically closed field.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then $g(x, y)+s$ is irreducible for all but $\operatorname{deg} g-1$ values of s, unless g is of the form $Q(h(x, y))$ with $\operatorname{deg} Q>1$.

Note: $(x+2 y)^{4}+3(x+2 y)^{2}+(x+2 y)+s \in k[x, y]$ always reducible.

Recall $\tilde{f}(x, y)=(f(x)-f(y)) /(x-y)$.

Let k be an algebraically closed field.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then $g(x, y)+s$ is irreducible for all but $\operatorname{deg} g-1$ values of s, unless g is of the form $Q(h(x, y))$ with $\operatorname{deg} Q>1$.

Note: $(x+2 y)^{4}+3(x+2 y)^{2}+(x+2 y)+s \in k[x, y]$ always reducible.

Recall $\widetilde{f}(x, y)=(f(x)-f(y)) /(x-y)$.
Lemma (S'2015)
A polynomial $\tilde{f}(x, y)$ is not of the form $Q(h(x, y))$ with $\operatorname{deg} Q>1$, unless chark $=p$ and $f(T)=\sum a_{i} T^{p^{i}}+a_{0}$.

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $f^{\prime \prime} \neq 0$ and $(q, d)=1$. Then ...

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $\operatorname{deg} f^{\prime} \geq 1, D^{2} f \neq 0$, and

$$
\operatorname{gcd}\left(\widetilde{f}(x, y)-f^{\prime}(x), \widetilde{f^{\prime}}(x, y)\right)=(x-y)^{t} \quad \text { in } \quad k[x, y], \quad \text { for some } t \geq 0 .
$$

Then ...

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $f^{\prime \prime} \neq 0$ and $(q, d)=1$. Then ...

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_{q}[T]$ be monic of degree d. Suppose $\operatorname{deg} f^{\prime} \geq 1, D^{2} f \neq 0$, and

$$
\operatorname{gcd}\left(\widetilde{f}(x, y)-f^{\prime}(x), \widetilde{f}^{\prime}(x, y)\right)=(x-y)^{t} \quad \text { in } \quad k[x, y], \quad \text { for some } t \geq 0
$$

Then ...

Conjecture

Let $f(T) \in k[T]$, where k is an algebraically closed field. Suppose $f^{\prime \prime} \neq 0$. Then

$$
\operatorname{gcd}\left(\widetilde{f}(x, y)-f^{\prime}(x), \widetilde{f}^{\prime}(x, y)\right)=1
$$

