What is the probability that a (sparse) polynomial of degree d over a finite field is irreducible?

Kaloyan Slavov

ETH Zürich

September 8, 2020

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q				
2	q^2				
3	q^3				

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^2				
3	q^3				

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^2	(T+a)(T+b)			
3	q^3				

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^2	(T+a)(T+b)	$\approx \begin{pmatrix} q \\ 2 \end{pmatrix}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^3				

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^2	(T+a)(T+b)	$\approx \begin{pmatrix} q \\ 2 \end{pmatrix}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^3	$(T+a)(T+b)(T+c)$ $(T+a)(T^2+bT+c)$			

Question (Gauss)

What is the probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^2	(T+a)(T+b)	$\approx \begin{pmatrix} q \\ 2 \end{pmatrix}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^3	$(T+a)(T+b)(T+c)$ $(T+a)(T^2+bT+c)$	$\approx \binom{q}{3} + q.\frac{q^2}{2}$	$\approx \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$\approx \frac{1}{3}$

Theorem (Gauss)

The probability that a random polynomial

$$T^{d} + a_{d-1}T^{d-1} + \dots + a_{1}T + a_{0} \in \mathbb{F}_{q}[T]$$

is irreducible is $\approx 1/d$.

d	total	reducible types	# reducible	Prob - reducible	Prob - irred.
1	q		0	0	1
2	q^2	(T+a)(T+b)	$\approx \begin{pmatrix} q \\ 2 \end{pmatrix}$	$\approx \frac{1}{2}$	$\approx \frac{1}{2}$
3	q^3	$(T+a)(T+b)(T+c)$ $(T+a)(T^2+bT+c)$	$\approx \binom{q}{3} + q.\frac{q^2}{2}$	$\approx \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$\approx \frac{1}{3}$

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Is it true that as $s, b \in \mathbb{F}_q$,

Prob
$$(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]) \approx 1/d$$
?

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Is it true that as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) \approx 1/d$?

Usually, yes.

Prob
$$\left(T^5 + T^4 - 2T^3 + sT + b \text{ is irreducible in } \mathbb{F}_{11}[T]\right)$$

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Is it true that as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) \approx 1/d$?

Usually, yes.

Prob
$$\left(T^5 + T^4 - 2T^3 + sT + b \text{ is irreducible in } \mathbb{F}_{11}[T]\right) = 34/11^2 = 0.202 \approx 0.2$$

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Is it true that as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) \approx 1/d$?

Usually, yes.

Prob
$$\left(T^5 + T^4 - 2T^3 + sT + b \text{ is irreducible in } \mathbb{F}_{11}[T]\right) = 34/11^2 = 0.202 \approx 0.2$$

But sometimes, no.

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Is it true that as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) \approx 1/d$?

Usually, yes.

Prob
$$\left(T^5 + T^4 - 2T^3 + sT + b \text{ is irreducible in } \mathbb{F}_{11}[T]\right) = 34/11^2 = 0.202 \approx 0.2$$

But sometimes, no.

$$\operatorname{Prob}\left(T^7 + sT + b \text{ is irreducible in } \mathbb{F}_{2^{10}}[T]\right) = 0.29... \not\approx 0.14$$
 X

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Is it true that as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) \approx 1/d$?

Usually, yes.

Prob
$$\left(T^5 + T^4 - 2T^3 + sT + b \text{ is irreducible in } \mathbb{F}_{11}[T]\right) = 34/11^2 = 0.202 \approx 0.2$$

But sometimes, no.

$$\operatorname{Prob}\left(T^{7} + sT + b \text{ is irreducible in } \mathbb{F}_{2^{10}}[T]\right) = 0.29... \not\approx 0.14 \quad \bigstar$$

$$\operatorname{Prob}\left(T^{27} - T^{9} + T^{3} + sT + b \text{ is irreducible in } \mathbb{F}_{3^{20}}[T]\right) = 0 \not\approx 1/27 \quad \bigstar$$

2/7

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d.

Then as
$$s, b \in \mathbb{F}_q$$
,

Prob
$$(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]) = 1/d + O_d(q^{-1/2}).$$

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose (d(d-1), q) = 1. Then as $s, b \in \mathbb{F}_q$,

$$\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$$

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose (d(d-1), q) = 1. Then as $s, b \in \mathbb{F}_q$,

$$\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $f'' \neq 0$ and (q, d) = 1.

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose (d(d-1), q) = 1. Then as $s, b \in \mathbb{F}_q$,

Prob $(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]) = 1/d + O_d(q^{-1/2}).$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $f'' \neq 0$ and (q, d) = 1. Then for all but $O_d(1)$ values of $s \in \mathbb{F}_q$, the polynomial f(T) + sT is a Morse polynomial;

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose (d(d-1), q) = 1. Then as $s, b \in \mathbb{F}_q$, $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $f'' \neq 0$ and (q, d) = 1. Then for all but $O_d(1)$ values of $s \in \mathbb{F}_q$, the polynomial f(T) + sT is a Morse polynomial; as $b \in \mathbb{F}_q$,

Prob
$$(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]) = 1/d + O_d(q^{-1/2}).$$

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose (d(d-1), q) = 1. Then as $s, b \in \mathbb{F}_q$, $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $f'' \neq 0$ and (q, d) = 1. Then for all but $O_d(1)$ values of $s \in \mathbb{F}_q$, the polynomial f(T) + sT is a Morse polynomial; as $b \in \mathbb{F}_q$,

Prob
$$(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]) = 1/d + O_d(q^{-1/2})$$

For
$$f(T) = \sum a_i T^i$$
, define $D^2 f = \sum a_i {i \choose 2} T^{i-2}$ (second Hasse derivative).

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose

Then for all but
$$d^2 - d - 1$$
 values of $s \in \mathbb{F}_q$: as $b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose

Then for all but
$$d^2 - d - 1$$
 values of $s \in \mathbb{F}_q$: as $b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be a polynomial as above. Then as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $\deg f' \ge 1$,

Then for all but
$$d^2 - d - 1$$
 values of $s \in \mathbb{F}_q$: as $b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be a polynomial as above. Then as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $\deg f' \ge 1$, $D^2 f \ne 0$, and

Then for all but
$$d^2 - d - 1$$
 values of $s \in \mathbb{F}_q$: as $b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be a polynomial as above. Then as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Suppose $\deg f' \ge 1$, $D^2 f \ne 0$, and
 $\gcd\left(\widetilde{f}(x,y) - f'(x), \widetilde{f}'(x,y)\right) = (x-y)^t$ in $k[x,y]$, for some $t \ge 0$.
Then for all but $d^2 - d - 1$ values of $s \in \mathbb{F}_q$: as $b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b$ is irreducible in $\mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2})$.

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be a polynomial as above. Then as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

For
$$f \in \mathbb{F}_q[T]$$
, write $f(x) - f(y) = (x - y)\widetilde{f}(x, y)$ in $\mathbb{F}_q[x, y]$.

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Suppose $\deg f' \ge 1$, $D^2 f \ne 0$, and
 $\gcd\left(\widetilde{f}(x,y) - f'(x), \widetilde{f}'(x,y)\right) = (x-y)^t$ in $k[x,y]$, for some $t \ge 0$.
Then for all but $d^2 - d - 1$ values of $s \in \mathbb{F}_q$: as $b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b$ is irreducible in $\mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2})$.

Corollary (S'2020)

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be a polynomial as above. Then as $s, b \in \mathbb{F}_q$,
 $\operatorname{Prob}\left(f(T) + sT + b \text{ is irreducible in } \mathbb{F}_q[T]\right) = 1/d + O_d(q^{-1/2}).$

E.g. $\operatorname{Prob}\left(T^{12}+T^3+sT+b \text{ is irreducible in } \mathbb{F}_{2^n}[T]\right) \approx 1/12.$

whose fiber over b is the set of roots of f(T) + sT + b.

whose fiber over b is the set of roots of f(T) + sT + b.

 $\begin{array}{c} & \downarrow \\ \varphi_s \text{ has geometric monodromy } S_d \\ & \downarrow \text{ [Chebotarev]} \end{array}$

whose fiber over b is the set of roots of f(T) + sT + b.

whose fiber over b is the set of roots of f(T) + sT + b.

whose fiber over b is the set of roots of f(T) + sT + b.

1) 2)

 \Downarrow [Ballico, Hefez'1986]

 φ_s has geometric monodromy S_d

 \Downarrow [Chebotarev]

$$\frac{\#\{b \in \mathbb{F}_q \mid f(T) + sT + b \text{ is irreducible}\}}{q} = \frac{\#\{\pi \in S_d \mid \pi \text{ is a cycle}\}}{\#S_d} + O(q^{-1/2})$$
$$= 1/d + O(q^{-1/2}).$$

whose fiber over b is the set of roots of f(T) + sT + b.

1)
$$\exists b \in \overline{\mathbb{F}_q}$$
 such that $f(T) + sT + b = (T - \alpha)^2 (T - \beta_1) ... (T - \beta_{d-2})$ in $\overline{\mathbb{F}_q}[T]$.
2)

 \Downarrow [Ballico, Hefez'1986]

 $arphi_s$ has geometric monodromy S_d

 \Downarrow [Chebotarev]

$$\frac{\#\{b \in \mathbb{F}_q \mid f(T) + sT + b \text{ is irreducible}\}}{q} = \frac{\#\{\pi \in S_d \mid \pi \text{ is a cycle}\}}{\#S_d} + O(q^{-1/2})$$
$$= 1/d + O(q^{-1/2}).$$

whose fiber over b is the set of roots of f(T) + sT + b.

1)
$$\exists b \in \overline{\mathbb{F}_q}$$
 such that $f(T) + sT + b = (T - \alpha)^2 (T - \beta_1) ... (T - \beta_{d-2})$ in $\overline{\mathbb{F}_q}[T]$.
2) $\widetilde{f}(x, y) + s$ is irreducible over $\overline{\mathbb{F}_q}$.

 \Downarrow [Ballico, Hefez'1986]

 $arphi_s$ has geometric monodromy S_d

 \Downarrow [Chebotarev]

$$\frac{\#\{b \in \mathbb{F}_q \mid f(T) + sT + b \text{ is irreducible}\}}{q} = \frac{\#\{\pi \in S_d \mid \pi \text{ is a cycle}\}}{\#S_d} + O(q^{-1/2})$$
$$= 1/d + O(q^{-1/2}).$$

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then g(x, y) + s is irreducible for all but $\deg g - 1$ values of s

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then g(x, y) + s is irreducible for all but $\deg g - 1$ values of s

Note: $(x + 2y)^4 + 3(x + 2y)^2 + (x + 2y) + s \in k[x, y]$ always reducible.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then g(x, y) + s is irreducible for all but $\deg g - 1$ values of s, unless g is of the form Q(h(x, y)) with $\deg Q > 1$.

Note: $(x + 2y)^4 + 3(x + 2y)^2 + (x + 2y) + s \in k[x, y]$ always reducible.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then g(x, y) + s is irreducible for all but $\deg g - 1$ values of s, unless g is of the form Q(h(x, y)) with $\deg Q > 1$.

Note: $(x+2y)^4 + 3(x+2y)^2 + (x+2y) + s \in k[x,y]$ always reducible.

Recall $\widetilde{f}(x,y) = (f(x) - f(y))/(x - y)$.

Theorem (Stein'1989; Lorenzini'1993)

Let $g \in k[x, y]$. Then g(x, y) + s is irreducible for all but $\deg g - 1$ values of s, unless g is of the form Q(h(x, y)) with $\deg Q > 1$.

Note: $(x+2y)^4 + 3(x+2y)^2 + (x+2y) + s \in k[x,y]$ always reducible.

Recall
$$\widetilde{f}(x,y) = (f(x) - f(y))/(x - y).$$

Lemma (S'2015)

A polynomial $\tilde{f}(x,y)$ is not of the form Q(h(x,y)) with $\deg Q > 1$, unless chark = p and $f(T) = \sum a_i T^{p^i} + a_0$.

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $f'' \neq 0$ and (q, d) = 1. Then ...

Theorem (S'2020)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $\deg f' \ge 1$, $D^2 f \ne 0$, and $\gcd\left(\widetilde{f}(x,y) - f'(x), \widetilde{f}'(x,y)\right) = (x-y)^t$ in k[x,y], for some $t \ge 0$.

Then ...

Proposition (Kurlberg, Rosenzweig; Jarden, Razon)

Let $f(T) \in \mathbb{F}_q[T]$ be monic of degree d. Suppose $f'' \neq 0$ and (q, d) = 1. Then ...

Theorem (S'2020)

Let
$$f(T) \in \mathbb{F}_q[T]$$
 be monic of degree d . Suppose $\deg f' \ge 1$, $D^2 f \ne 0$, and
 $\gcd\left(\widetilde{f}(x,y) - f'(x), \widetilde{f}'(x,y)\right) = (x-y)^t$ in $k[x,y]$, for some $t \ge 0$.

Then ...

Conjecture

Let $f(T) \in k[T]$, where k is an algebraically closed field. Suppose $f'' \neq 0$. Then

$$gcd\left(\widetilde{f}(x,y) - f'(x), \widetilde{f}'(x,y)\right) = 1.$$