Dynamics of a BEC
 in the Thomas-Fermi Regime

Daniele Dimonte

with E. L. Giacomelli, M. Correggi and P. Pickl SwissMAP General Meeting, 08.09.2020

TABle of Content

Introduction

Dynamical Problem

Conclusion

Introduction

Dynamical Problem

Conclusion

Physical Setting

Goal: study the dynamics of N identical bosons in a box Λ with periodic BC

- Thermodynamic limit: with fixed density $\rho:=N /|\Lambda|$, study of the limit of infinite volume of the energy per particle

$$
\mathfrak{e}(\rho):=\lim _{N \rightarrow+\infty} \frac{\inf \sigma\left(H_{N}\right)}{N}
$$

Physical Setting

Goal: study the dynamics of N identical bosons in a box Λ with periodic BC

- Thermodynamic limit: with fixed density $\rho:=N /|\Lambda|$, study of the limit of infinite volume of the energy per particle

$$
\begin{align*}
\mathfrak{e}(\rho) & :=\lim _{N \rightarrow+\infty} \frac{\inf \sigma\left(H_{N}\right)}{N} \\
& =4 \pi \rho a\left(1+\frac{128}{15 \sqrt{\pi}} \sqrt{\rho a^{3}}+o\left(\sqrt{\rho a^{3}}\right)\right) \tag{LHY}
\end{align*}
$$

- Dilute limit: if ρa^{3} is small (a scattering length, effective length of the interaction) we obtain the Lee-Huang-Yang formula (LHY)

Physical Setting

For the variational problem, in a dilute limit (at $T=0$) one expects that the macroscopic ground state of the system $\Psi^{G S}$ is well approximated by a one-particle state, i.e., there is Bose-Einstein Condensation (BEC)

$$
\begin{aligned}
H_{N} \Psi^{\mathrm{GS}} & =E_{0}(N) \Psi^{\mathrm{GS}} \\
\Psi^{\mathrm{GS}} & \approx\left(\varphi^{\mathrm{GS}}\right)^{\otimes N}
\end{aligned}
$$

φ^{GS} ground state of a nonlinear effective one-particle functional

$$
\mathcal{E}^{\mathrm{eff}}[\varphi]:=\langle\varphi, h \varphi\rangle+\left\langle\varphi, \mathcal{V}_{\mathrm{eff}}(\varphi)\right\rangle
$$

with h one-particle Hamiltonian and $\mathcal{V}_{\text {eff }}$ an effective nonlinear potential

Dilute Limits

Let v_{N} be the (N-dependent) pair interaction

- Mean-Field (Hartree)

$$
v_{N}(\mathrm{x}):=\frac{1}{N} v(\mathrm{x}), \quad \quad \mathcal{V}_{\mathrm{eff}}(\psi)=\frac{1}{2}\left(v *|\psi|^{2}\right)|\psi|^{2}
$$

- Gross-Pitaevskii (GP)

$$
v_{N}(\mathrm{x}):=N^{2} v(N \mathrm{x}), \quad \mathcal{V}_{\text {eff }}(\psi)=\frac{1}{2} g|\psi|^{4}
$$

- Intermediate regimes $(\beta \in(0,1))$

$$
v_{N}(\mathrm{x}):=N^{3 \beta-1} v\left(N^{\beta} \mathrm{x}\right), \quad \mathcal{V}_{\mathrm{eff}}(\psi)=\frac{1}{2}\left(\int v\right)|\psi|^{4}
$$

In all these cases a_{N} the scattering length of v_{N} satisfies $8 \pi N a_{N} \rightarrow g$, with g constant $\left(\rho a_{N}^{3} \approx N^{-2} \ll 1\right)$

Dilute Limits

Let v_{N} be the (N-dependent) pair interaction

- Mean-Field (Hartree) $(\beta=0)$

$$
v_{N}(\mathrm{x}):=\frac{1}{N} v(\mathrm{x}), \quad \mathcal{V}_{\mathrm{eff}}(\psi)=\frac{1}{2}\left(v *|\psi|^{2}\right)|\psi|^{2}
$$

- Gross-Pitaevskii (GP) $(\beta=1)$

$$
v_{N}(\mathrm{x}):=N^{2} v(N \mathrm{x}), \quad \mathcal{V}_{\mathrm{eff}}(\psi)=\frac{1}{2} g|\psi|^{4}
$$

- Intermediate regimes $(\beta \in(0,1))$

$$
v_{N}(\mathrm{x}):=N^{3 \beta-1} v\left(N^{\beta} \mathrm{x}\right), \quad \mathcal{V}_{\mathrm{eff}}(\psi)=\frac{1}{2}\left(\int v\right)|\psi|^{4}
$$

In all these cases a_{N} the scattering length of v_{N} satisfies $8 \pi N a_{N} \rightarrow g$, with g constant $\left(\rho a_{N}^{3} \approx N^{-2} \ll 1\right)$

Thomas-Fermi Regime

In experimental settings, in particular in considering rotating systems, $N a_{N} \gg 1$; this is called Thomas-Fermi regime, in analogy with the density theory for large atoms

We consider a pair interaction such that $8 \pi a_{N} \rightarrow+\infty$, compatibly with the dilute condition $\rho a_{N}^{3} \ll 1$

Thomas-Fermi Regime

Fix the size of Λ and consider the following many-body Hamiltonian

$$
H_{N}:=\sum_{j=1}^{N}\left(-\Delta_{j}\right)+g_{N} N^{3 \beta-1} \sum_{1 \leq j<k \leq N} v\left(N^{\beta}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right)
$$

defined on $\mathcal{H}_{N}:=\mathfrak{h}^{\otimes_{s} N}$, with $\mathfrak{h}=L^{2}(\Lambda)$

- Without loss of generality $\int v=1$; then the scattering length of $g_{N} N^{3 \beta-1} v\left(N^{\beta}.\right)$ is given for $\beta \in[0,1)$ by

$$
N a_{N}=\frac{1}{8 \pi} g_{N}(1+o(1))
$$

therefore we require $g_{N} \gg 1$ (TF regime)

- If $g_{N} \leq N^{2 / 3}$ this is still a dilute limit

Mathematical Setting

To evaluate one-particle observables on many-body states $\Psi \in \mathcal{H}_{N}$ it is convenient to introduce the 1-particle reduced density matrix $\gamma_{\Psi}^{(1)}$ defined so that

$$
\left\langle\Psi, \sum_{j=1}^{N} A_{j} \Psi\right\rangle=N \operatorname{tr}\left[\gamma_{\Psi}^{(1)} A\right]
$$

for any A a one-particle observable

Complete BEC

Given a many-body state $\Psi \in \mathcal{H}_{N}$ and a one-particle state $\varphi \in \mathfrak{h}$

$$
\gamma_{\Psi}^{(1)} \rightarrow P_{\varphi}:=|\varphi\rangle\langle\varphi|, \quad \text { in } \mathfrak{S}_{1}(\mathfrak{h})
$$

i.e., a macroscopic fraction of the particles occupies the same one-particle state

Introduction

Dynamical Problem

Conclusion

Setting

We consider a trapped system in $\Lambda=\left[-\frac{1}{2}, \frac{1}{2}\right]^{3}\left(\mathfrak{h}=L^{2}(\Lambda)\right)$

$$
H_{N}:=\sum_{j=1}^{N}\left(-\Delta_{j}\right)+g_{N} N^{3 \beta-1} \sum_{1 \leq j<k \leq N} v\left(N^{\beta}\left(\mathrm{x}_{j}-\mathrm{x}_{k}\right)\right)
$$

The solution to the Schrödinger equation is

$$
\left\{\begin{array}{l}
i \partial_{t} \Psi_{N, t}=H_{N} \Psi_{N, t} \\
\left.\Psi_{N, t}\right|_{t=0}=\Psi_{N, 0}
\end{array}\right.
$$

Goal: understand whether complete BEC is preserved by time evolution, i.e.

$$
\gamma_{\Psi_{N, 0}}^{(1)} \rightarrow P_{\varphi_{0}} \text { in } \mathfrak{S}_{1}(\mathfrak{h}) \Longrightarrow \gamma_{\Psi_{N, t}}^{(1)} \rightarrow P_{\varphi_{t}^{\mathrm{GP}}} \text { in } \mathfrak{S}_{1}(\mathfrak{h})
$$

Gross-Pitaevski Equation

Expected limiting equation: the time-dependent GP equation

$$
\left\{\begin{array}{l}
i \partial_{t} \varphi_{t}^{\mathrm{GP}}=-\Delta \varphi_{t}^{\mathrm{GP}}+g_{N}\left|\varphi_{t}^{\mathrm{GP}}\right|^{2} \varphi_{t}^{\mathrm{GP}} \\
\left.\varphi_{t}^{\mathrm{GP}}\right|_{t=0}=\varphi_{0}
\end{array}\right.
$$

Energy of the system:

$$
\begin{aligned}
\mathcal{E}^{\mathrm{GP}}[\varphi] & =\int_{\Lambda} d \mathrm{x}\left(\frac{1}{2}|\nabla \varphi(\mathrm{x})|^{2}+\frac{g_{N}}{2}|\varphi(\mathrm{x})|^{4}\right) \\
E^{\mathrm{GP}} & =\inf _{\|\varphi\|_{2}=1} \mathcal{E}^{\mathrm{GP}}[\varphi]
\end{aligned}
$$

Idea: for low energies the kinetic term is negligible if N is large

Thomas-Fermi Energy

Dropping the kinetic term we obtain the TF energy functional

$$
\begin{aligned}
\mathcal{E}^{\mathrm{TF}}[\rho] & =\frac{g_{N}}{2} \int_{\Lambda} d \mathbf{x} \rho^{2}(\mathrm{x}), \\
E^{\mathrm{TF}} & =\inf _{\|\rho\|_{1}=1, \rho \geq 0} \mathcal{E}^{\mathrm{TF}}[\rho]
\end{aligned}
$$

Fact: in a box $E^{\mathrm{GP}}=E^{\mathrm{TF}}=\frac{g_{N}}{2}$
(in $\mathbb{R}^{3}, E^{\mathrm{GP}} \approx E^{\mathrm{TF}}$ at first order in N)

Intermediate Equation

To prove the approximation $\gamma_{\Psi_{N, t}}^{(1)} \approx P_{\varphi_{t}^{\mathrm{GP}}}$ it is helpful to introduce an intermediate effective equation, the time-dependent Hartree (H) equation

$$
\left\{\begin{array}{l}
i \partial_{t} \varphi_{t}^{\mathrm{H}}=-\Delta \varphi_{t}^{\mathrm{H}}+g_{N} v_{N} *\left|\varphi_{t}^{\mathrm{H}}\right|^{2} \varphi_{t}^{\mathrm{H}} \\
\left.\varphi_{t}^{\mathrm{H}}\right|_{t=0}=\varphi_{0}
\end{array}\right.
$$

Intermediate Equation

To prove the approximation $\gamma_{\Psi_{N, t}}^{(1)} \approx P_{\varphi_{t}^{\mathrm{GP}}}$ it is helpful to introduce an intermediate effective equation, the time-dependent Hartree (H) equation

$$
\left\{\begin{array}{l}
i \partial_{t} \varphi_{t}^{\mathrm{H}}=-\Delta \varphi_{t}^{\mathrm{H}}+g_{N} v_{N} *\left|\varphi_{t}^{\mathrm{H}}\right|^{2} \varphi_{t}^{\mathrm{H}} \\
\left.\varphi_{t}^{\mathrm{H}}\right|_{t=0}=\varphi_{0}
\end{array}\right.
$$

We exploit $v_{N} *|\varphi|^{2} \rightarrow|\varphi|^{2}$, but we need control on $\|\varphi\|_{\infty}$ indipendent on g_{N}

Conjecture

Let φ_{0} be the initial datum of the GP equation

$$
\varphi_{0} \in L^{\infty}(\Lambda) \Longrightarrow \sup _{t \in \mathbb{R}}\left\|\varphi_{t}^{\mathrm{H}}\right\|_{\infty} \leq C
$$

Theorem

Assume that $v \in L^{2}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}, x d x\right)$, the Conjecture holds true and

$$
\begin{gathered}
\left\|\gamma_{\Psi_{N, 0}}^{(1)}-P_{\varphi_{0}^{\mathrm{GP}}}\right\|_{\mathfrak{S}^{1}} \ll N^{-\frac{1-3 \beta}{2}} \\
\mathcal{E}^{\mathrm{GP}}\left[\varphi_{0}\right]-E^{\mathrm{GP}} \ll \xi_{N} \leq \sqrt{g_{N}} \\
g_{N} \ll \log N
\end{gathered}
$$

then for each $t \in \mathbb{R}$ and for any $\beta \in[0,1 / 6)$ there is complete $B E C$ on $\varphi_{t}^{\mathrm{GP}}$, i.e.

$$
\left\|\gamma_{\Psi_{N, t}}^{(1)}-P_{\varphi_{t}^{\mathrm{GP}}}\right\|_{\mathfrak{S}^{1}} \ll 1
$$

REMARKS

- Similar result is achievable also in $d=2$
- Open question is to go beyond $\beta=1 / 6$; also related to stationary problem limitations
- (HP1) means that there is BEC in the initial datum $\Psi_{N, 0}$ on the state φ_{0}
- (HP2) means that the GP initial datum φ_{0} is close to a ground state in energy: important to prove that the Hartree solution is close to the GP solution
- (HP3) is necessary to prove condensation on a state φ_{t}^{H}; still allows for a dilute limit

$$
\begin{gather*}
\left\|\gamma_{\Psi_{N, 0}}^{(1)}-P_{\varphi_{0}^{\mathrm{GP}}}\right\|_{\mathfrak{S}^{1}} \ll N^{-\frac{1-3 \beta}{2}} \tag{HP1}\\
\mathcal{E}^{\mathrm{GP}}\left[\varphi_{0}\right]-E^{\mathrm{GP}} \ll \xi_{N} \leq \sqrt{g_{N}} \tag{HP2}\\
g_{N} \ll \log N \tag{HP3}
\end{gather*}
$$

Sketch of The proof

Two parts:

- Approximate the $\gamma_{\Psi_{N, t}}^{(1)}$ with $P_{\varphi_{t}^{\mathrm{H}}}$
- Estimate the difference between φ_{t}^{H} and $\varphi_{t}^{\mathrm{GP}}$

Main ingredients:

- Tools developed in [P11]
- Energy estimates for the one-particle problem
[P11] Pickl, "A Simple Derivation of Mean Field Limits for Quantum Systems"

Many-Body to Hartree

Similarly as in [P11], the goal is obtaining a Grönwall-type estimate for

$$
\alpha_{t}:=1-\left\langle\Psi_{N, t},\left(\left|\varphi_{t}^{\mathrm{H}}\right\rangle\left\langle\varphi_{t}^{\mathrm{H}}\right|\right)_{1} \Psi_{N, t}\right\rangle
$$

We need to estimate terms of the form

$$
\left\|v_{N} *\left|\varphi_{t}^{\mathrm{H}}\right|^{2}\right\|_{\infty} \leq\|v\|_{1}\left\|\varphi_{t}^{\mathrm{H}}\right\|_{\infty}^{2}
$$

Using the Conjecture we get the desired result; if we do not assume it, we can only use the kinetic energy: we do not reach the time scale of vortices (compare with [JS15])
[JS15] Jerrard, Smets, "Vortex dynamics for the two-dimensional non-homogeneous Gross-Pitaevskii equation"

Hartree to Gross-Pitaevskii

$$
\begin{aligned}
\partial_{t}\left\|\varphi_{t}^{\mathrm{GP}}-\varphi_{t}^{\mathrm{H}}\right\|_{2}^{2} \leq & g_{N}\left|\operatorname{Im}\left\langle\varphi_{t}^{\mathrm{H}},\left(\left|\varphi_{t}^{\mathrm{GP}}\right|^{2}-v_{N} *\left|\varphi_{t}^{\mathrm{H}}\right|^{2}\right) \varphi_{t}^{\mathrm{GP}}\right\rangle\right| \\
\leq & g_{N}\left|\left\langle\varphi_{t}^{\mathrm{H}},\left(\left|\varphi_{t}^{\mathrm{GP}}\right|^{2}-\left|\varphi_{t}^{\mathrm{H}}\right|^{2}\right) \varphi_{t}^{\mathrm{GP}}\right\rangle\right| \\
& +g_{N}\left|\left\langle\varphi_{t}^{\mathrm{H}},\left(\left|\varphi_{t}^{\mathrm{H}}\right|^{2}-v_{N} *\left|\varphi_{t}^{\mathrm{H}}\right|^{2}\right) \varphi_{t}^{\mathrm{GP}}\right\rangle\right|
\end{aligned}
$$

To prove convergence of this last two terms use L^{2} difference of the square of the solutions (energy bound) for the first term and $v_{N} \rightarrow \delta$ as a distribution for the second one:

$$
\begin{aligned}
& \left|\left\langle\varphi_{t}^{\mathrm{H}},\left(\left|\varphi_{t}^{\mathrm{H}}\right|^{2}-v_{N} *\left|\varphi_{t}^{\mathrm{H}}\right|^{2}\right) \varphi_{t}^{\mathrm{GP}}\right\rangle\right| \leq \\
& \quad \leq \frac{C}{N^{\beta}}\left\|\nabla \varphi_{t}^{\mathrm{H}}\right\|_{2}\left\|\varphi_{t}^{\mathrm{H}}\right\|_{\infty}\left\|\varphi_{t}^{\mathrm{H}}\right\|_{4}\left\|\varphi_{t}^{\mathrm{GP}}\right\|_{4}
\end{aligned}
$$

Introduction

Dynamical Problem

Conclusion

Conclusion

- Condensation is preserved under suitable assumptions of regularity on the solution
Q: How to prove the Conjecture?
Q: Vortices are encoded in the vorticity measure, which depends on the gradient of the solution; can a similar result be proven in a stronger (e.g. H^{1}) norm?
- There is BEC in the Thomas Fermi limit, at least in a scaling with $\beta<1 / 3$ (work in progress with M . Correggi and E . L. Giacomelli)
Q: Can we extend the result for $\beta>1 / 6$?

Conclusion

- Condensation is preserved under suitable assumptions of regularity on the solution
Q: How to prove the Conjecture?
Q: Vortices are encoded in the vorticity measure, which depends on the gradient of the solution; can a similar result be proven in a stronger (e.g. H^{1}) norm?
- There is BEC in the Thomas Fermi limit, at least in a scaling with $\beta<1 / 3$ (work in progress with M . Correggi and E . L. Giacomelli)
Q: Can we extend the result for $\beta>1 / 6$?

Thanks for the attention!

