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Physical Setting

Goal: study the dynamics of N identical bosons in a box Λ with
periodic BC
• Thermodynamic limit: with fixed density ρ := N/ |Λ|, study of

the limit of infinite volume of the energy per particle

e (ρ) := lim
N→+∞

inf σ (HN)

N

=4πρa
(
1 +

128
15
√
π

√
ρa3 + o

(√
ρa3
))

(LHY)

• Dilute limit: if ρa3 is small (a scattering length, effective
length of the interaction) we obtain the Lee-Huang-Yang
formula (LHY)
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Physical Setting

For the variational problem, in a dilute limit (at T = 0) one expects
that the macroscopic ground state of the system ΨGS is well
approximated by a one-particle state, i.e., there is Bose-Einstein
Condensation (BEC)

HNΨGS = E0 (N) ΨGS

ΨGS ≈
(
ϕGS)⊗N

ϕGS ground state of a nonlinear effective one-particle functional

Eeff [ϕ] := 〈ϕ, hϕ〉+ 〈ϕ,Veff (ϕ)〉

with h one-particle Hamiltonian and Veff an effective nonlinear
potential
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Dilute Limits
Let vN be the (N-dependent) pair interaction
• Mean-Field (Hartree)

vN (x) :=
1
N
v (x) , Veff (ψ) =

1
2

(
v ∗ |ψ|2

)
|ψ|2

• Gross-Pitaevskii (GP)

vN (x) := N2v (Nx) , Veff (ψ) =
1
2
g |ψ|4

• Intermediate regimes (β ∈ (0, 1))

vN (x) := N3β−1v
(
Nβx

)
, Veff (ψ) =

1
2

(∫
v

)
|ψ|4

In all these cases aN the scattering length of vN satisfies
8πNaN → g , with g constant (ρa3

N ≈ N−2 � 1)
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Thomas-Fermi Regime

In experimental settings, in particular in considering rotating
systems, NaN � 1; this is called Thomas-Fermi regime, in analogy
with the density theory for large atoms

We consider a pair interaction such that 8πaN → +∞, compatibly
with the dilute condition ρa3

N � 1
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Thomas-Fermi Regime

Fix the size of Λ and consider the following many-body Hamiltonian

HN :=
N∑
j=1

(−∆j) + gNN
3β−1

∑
1≤j<k≤N

v
(
Nβ (xj − xk)

)
defined on HN := h⊗sN , with h = L2 (Λ)

• Without loss of generality
∫
v = 1; then the scattering length

of gNN3β−1v
(
Nβ·

)
is given for β ∈ [0, 1) by

NaN =
1
8π

gN (1 + o (1))

therefore we require gN � 1 (TF regime)
• If gN ≤ N2/3 this is still a dilute limit
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Mathematical Setting
To evaluate one-particle observables on many-body states Ψ ∈ HN

it is convenient to introduce the 1-particle reduced density matrix
γ

(1)
Ψ defined so that〈

Ψ,
N∑
j=1

AjΨ

〉
= N tr

[
γ

(1)
Ψ A

]
for any A a one-particle observable

Complete BEC
Given a many-body state Ψ ∈ HN and a one-particle state ϕ ∈ h

γ
(1)
Ψ → Pϕ := |ϕ〉 〈ϕ| , in S1 (h)

i.e., a macroscopic fraction of the particles occupies the same
one-particle state
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Setting

We consider a trapped system in Λ =
[
−1

2 ,
1
2

]3 (h = L2 (Λ))

HN :=
N∑
j=1

(−∆j) + gNN
3β−1

∑
1≤j<k≤N

v
(
Nβ (xj − xk)

)
The solution to the Schrödinger equation is{

i∂tΨN,t = HNΨN,t

ΨN,t |t=0 = ΨN,0

Goal: understand whether complete BEC is preserved by time
evolution, i.e.

γ
(1)
ΨN,0
→ Pϕ0 in S1 (h) =⇒ γ

(1)
ΨN,t
→ PϕGP

t
in S1 (h)
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Gross-Pitaevskii Equation

Expected limiting equation: the time-dependent GP equation{
i∂tϕ

GP
t = −∆ϕGP

t + gN |ϕGP
t |2ϕGP

t

ϕGP
t

∣∣
t=0 = ϕ0

Energy of the system:

EGP [ϕ] =

∫
Λ
dx

(
1
2
|∇ϕ (x)|2 +

gN
2
|ϕ (x)|4

)
EGP = inf

‖ϕ‖2=1
EGP [ϕ]

Idea: for low energies the kinetic term is negligible if N is large
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Thomas-Fermi Energy

Dropping the kinetic term we obtain the TF energy functional

ETF [ρ] =
gN
2

∫
Λ
dx ρ2 (x) ,

ETF = inf
‖ρ‖1=1, ρ≥0

ETF [ρ]

Fact: in a box EGP = ETF = gN
2

(in R3, EGP ≈ ETF at first order in N)
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Intermediate Equation

To prove the approximation γ(1)
ΨN,t
≈ PϕGP

t
it is helpful to introduce

an intermediate effective equation, the time-dependent Hartree (H)
equation {

i∂tϕ
H
t = −∆ϕH

t + gNvN ∗
∣∣ϕH

t

∣∣2 ϕH
t

ϕH
t

∣∣
t=0 = ϕ0

We exploit vN ∗ |ϕ|2 → |ϕ|2, but we need control on ‖ϕ‖∞
indipendent on gN
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Conjecture
Let ϕ0 be the initial datum of the GP equation

ϕ0 ∈ L∞ (Λ) =⇒ sup
t∈R

∥∥ϕH
t

∥∥
∞ ≤ C

Theorem
Assume that v ∈ L2 (R3) ∩ L1 (R3, xdx

)
, the Conjecture holds true

and ∥∥∥γ(1)
ΨN,0
− PϕGP

0

∥∥∥
S1
� N−

1−3β
2

EGP [ϕ0]− EGP � ξN ≤
√
gN

gN � logN

then for each t ∈ R and for any β ∈ [0, 1/6) there is complete BEC
on ϕGP

t , i.e. ∥∥∥γ(1)
ΨN,t
− PϕGP

t

∥∥∥
S1
� 1
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Remarks
• Similar result is achievable also in d = 2
• Open question is to go beyond β = 1/6; also related to

stationary problem limitations
• (HP1) means that there is BEC in the initial datum ΨN,0 on

the state ϕ0

• (HP2) means that the GP initial datum ϕ0 is close to a
ground state in energy: important to prove that the Hartree
solution is close to the GP solution
• (HP3) is necessary to prove condensation on a state ϕH

t ; still
allows for a dilute limit∥∥∥γ(1)

ΨN,0
− PϕGP

0

∥∥∥
S1
� N−

1−3β
2 (HP1)

EGP [ϕ0]− EGP � ξN ≤
√
gN (HP2)

gN � logN (HP3)
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Sketch of the proof

Two parts:
• Approximate the γ(1)

ΨN,t
with PϕH

t

• Estimate the difference between ϕH
t and ϕGP

t

Main ingredients:
• Tools developed in [P11]
• Energy estimates for the one-particle problem

[P11] Pickl, “A Simple Derivation of Mean Field Limits for Quantum Systems”
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Many-Body to Hartree

Similarly as in [P11], the goal is obtaining a Grönwall-type
estimate for

αt := 1− 〈ΨN,t ,
(∣∣ϕH

t

〉 〈
ϕH
t

∣∣)
1 ΨN,t〉

We need to estimate terms of the form∥∥∥vN ∗ ∣∣ϕH
t

∣∣2∥∥∥
∞
≤ ‖v‖1

∥∥ϕH
t

∥∥2
∞

Using the Conjecture we get the desired result; if we do not assume
it, we can only use the kinetic energy: we do not reach the time
scale of vortices (compare with [JS15])

[JS15] Jerrard, Smets, “Vortex dynamics for the two-dimensional
non-homogeneous Gross-Pitaevskii equation”
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Hartree to Gross-Pitaevskii

∂t
∥∥ϕGP

t − ϕH
t

∥∥2
2 ≤ gN

∣∣∣Im〈ϕH
t ,
(∣∣ϕGP

t

∣∣2 − vN ∗
∣∣ϕH

t

∣∣2)ϕGP
t 〉
∣∣∣

≤ gN

∣∣∣〈ϕH
t ,
(∣∣ϕGP

t

∣∣2 − ∣∣ϕH
t

∣∣2)ϕGP
t 〉
∣∣∣

+ gN

∣∣∣〈ϕH
t ,
(∣∣ϕH

t

∣∣2 − vN ∗
∣∣ϕH

t

∣∣2)ϕGP
t 〉
∣∣∣

To prove convergence of this last two terms use L2 difference of the
square of the solutions (energy bound) for the first term and
vN → δ as a distribution for the second one:∣∣∣〈ϕH

t ,
(∣∣ϕH

t

∣∣2 − vN ∗
∣∣ϕH

t

∣∣2)ϕGP
t 〉
∣∣∣ ≤

≤ C

Nβ

∥∥∇ϕH
t

∥∥
2

∥∥ϕH
t

∥∥
∞
∥∥ϕH

t

∥∥
4

∥∥ϕGP
t

∥∥
4
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Conclusion

• Condensation is preserved under suitable assumptions of
regularity on the solution
Q: How to prove the Conjecture?
Q: Vortices are encoded in the vorticity measure, which depends

on the gradient of the solution; can a similar result be proven
in a stronger (e.g. H1) norm?

• There is BEC in the Thomas Fermi limit, at least in a scaling
with β < 1/3 (work in progress with M. Correggi and E. L.
Giacomelli)
Q: Can we extend the result for β > 1/6?

Thanks for the attention!
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