Dynamical Problem 0000000000 Conclusion 00

Dynamics of a BEC in the Thomas-Fermi regime

Daniele Dimonte

with E. L. Giacomelli, M. Correggi and P. Pickl SwissMAP General Meeting, 08.09.2020

Dynamical Problem 0000000000

Conclusion 00

TABLE OF CONTENT

INTRODUCTION

Dynamical Problem

CONCLUSION

Dynamical Problem 0000000000 Conclusion 00

INTRODUCTION

Dynamical Problem

CONCLUSION

Dynamical Problem 0000000000 Conclusion 00

Physical Setting

Goal: study the dynamics of N identical bosons in a box Λ with periodic BC

 Thermodynamic limit: with fixed density ρ := N/ |Λ|, study of the limit of infinite volume of the energy per particle

$$\mathfrak{e}(\rho) := \lim_{N \to +\infty} \frac{\inf \sigma(H_N)}{N}$$
$$= 4\pi \rho a \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{\rho a^3} + o\left(\sqrt{\rho a^3}\right) \right) \qquad (LHY)$$

• Dilute limit: if ρa^3 is small (a scattering length, effective length of the interaction) we obtain the Lee-Huang-Yang formula (LHY)

Dynamical Problem 0000000000 Conclusion 00

Physical Setting

Goal: study the dynamics of N identical bosons in a box Λ with periodic BC

 Thermodynamic limit: with fixed density ρ := N/ |Λ|, study of the limit of infinite volume of the energy per particle

$$\mathfrak{e}(\rho) := \lim_{N \to +\infty} \frac{\inf \sigma(H_N)}{N}$$
$$= 4\pi\rho a \left(1 + \frac{128}{15\sqrt{\pi}}\sqrt{\rho a^3} + o\left(\sqrt{\rho a^3}\right) \right) \qquad (\mathsf{LHY})$$

• Dilute limit: if ρa^3 is small (a scattering length, effective length of the interaction) we obtain the Lee-Huang-Yang formula (LHY)

Conclusion 00

Physical Setting

For the variational problem, in a dilute limit (at T = 0) one expects that the macroscopic ground state of the system $\Psi^{\rm GS}$ is well approximated by a one-particle state, i.e., there is Bose-Einstein Condensation (BEC)

$$egin{aligned} \mathcal{H}_{\mathcal{N}}\Psi^{\mathrm{GS}} &= \mathcal{E}_{0}\left(\mathcal{N}
ight)\Psi^{\mathrm{GS}} \ \Psi^{\mathrm{GS}} &pprox \left(arphi^{\mathrm{GS}}
ight)^{\otimes\mathcal{N}} \end{aligned}$$

 $\varphi^{\rm GS}$ ground state of a nonlinear effective one-particle functional

$$\mathcal{E}^{ ext{eff}}\left[arphi
ight] := \left\langlearphi, \pmb{h}arphi
ight
angle + \left\langlearphi, \mathcal{V}_{ ext{eff}}\left(arphi
ight)
ight
angle$$

with h one-particle Hamiltonian and $\mathcal{V}_{\rm eff}$ an effective nonlinear potential

Dynamical Problem 0000000000 Conclusion 00

DILUTE LIMITS

Let v_N be the (*N*-dependent) pair interaction

• Mean-Field (Hartree)

$$\mathcal{V}_{\mathcal{N}}\left(\mathsf{x}
ight) := rac{1}{\mathcal{N}} \mathcal{V}\left(\mathsf{x}
ight), \qquad \qquad \mathcal{V}_{\mathrm{eff}}\left(\psi
ight) = rac{1}{2} \left(\mathcal{v} * \left|\psi
ight|^{2}
ight) \left|\psi
ight|^{2}$$

• Gross-Pitaevskii (GP)

$$v_{N}(\mathbf{x}) := N^{2} v(N \mathbf{x}), \qquad \qquad \mathcal{V}_{\mathrm{eff}}(\psi) = \frac{1}{2} g |\psi|^{4}$$

• Intermediate regimes $(\beta \in (0, 1))$

$$v_{N}(\mathsf{x}) := N^{3eta-1} v\left(N^{eta} \mathsf{x}
ight), \quad \mathcal{V}_{ ext{eff}}(\psi) = rac{1}{2} \left(\int v
ight) |\psi|^{4}$$

In all these cases a_N the scattering length of v_N satisfies $8\pi Na_N \rightarrow g$, with g constant $(\rho a_N^3 \approx N^{-2} \ll 1)$

Dynamical Problem 0000000000 Conclusion 00

DILUTE LIMITS

Let v_N be the (*N*-dependent) pair interaction

• Mean-Field (Hartree) ($\beta = 0$)

$$v_{N}(\mathbf{x}) := rac{1}{N} v(\mathbf{x}), \qquad \qquad \mathcal{V}_{\mathrm{eff}}(\psi) = rac{1}{2} \left(v * |\psi|^{2}
ight) |\psi|^{2}$$

• Gross-Pitaevskii (GP) ($\beta = 1$)

$$v_{N}(\mathbf{x}) := N^{2} v(N \mathbf{x}), \qquad \qquad \mathcal{V}_{\mathrm{eff}}(\psi) = \frac{1}{2} g |\psi|^{4}$$

• Intermediate regimes $(\beta \in (0, 1))$

$$v_{N}(\mathsf{x}) := N^{3\beta-1}v\left(N^{\beta}\mathsf{x}
ight), \quad \mathcal{V}_{\mathrm{eff}}(\psi) = rac{1}{2}\left(\int v
ight)|\psi|^{4}$$

In all these cases a_N the scattering length of v_N satisfies $8\pi Na_N \rightarrow g$, with g constant $(\rho a_N^3 \approx N^{-2} \ll 1)$

Dynamical Problem 0000000000 Conclusion 00

THOMAS-FERMI REGIME

In experimental settings, in particular in considering rotating systems, $Na_N \gg 1$; this is called Thomas-Fermi regime, in analogy with the density theory for large atoms

We consider a pair interaction such that $8\pi a_N \to +\infty$, compatibly with the dilute condition $\rho a_N^3 \ll 1$

Conclusion 00

THOMAS-FERMI REGIME

Fix the size of Λ and consider the following many-body Hamiltonian

$$H_N := \sum_{j=1}^N \left(-\Delta_j
ight) + g_N N^{3eta - 1} \sum_{1 \leq j < k \leq N} v\left(N^eta\left(\mathsf{x}_j - \mathsf{x}_k
ight)
ight)$$

defined on $\mathcal{H}_{N} := \mathfrak{h}^{\otimes_{s} N}$, with $\mathfrak{h} = L^{2}(\Lambda)$

• Without loss of generality $\int v = 1$; then the scattering length of $g_N N^{3\beta-1} v (N^{\beta} \cdot)$ is given for $\beta \in [0, 1)$ by

$$Na_{N}=rac{1}{8\pi}g_{N}\left(1+o\left(1
ight)
ight)$$

therefore we require $g_N \gg 1$ (TF regime)

• If $g_N \leq N^{2/3}$ this is still a *dilute limit*

Conclusion 00

MATHEMATICAL SETTING

To evaluate one-particle observables on many-body states $\Psi \in \mathcal{H}_N$ it is convenient to introduce the 1-particle reduced density matrix $\gamma_{\Psi}^{(1)}$ defined so that

$$\left\langle \Psi, \sum_{j=1}^{N} A_{j}\Psi
ight
angle = N \operatorname{tr}\left[\gamma_{\Psi}^{(1)}A
ight]$$

for any A a one-particle observable

Complete BEC

Given a many-body state $\Psi \in \mathcal{H}_N$ and a one-particle state $\varphi \in \mathfrak{h}$

$$\gamma_{\Psi}^{(1)} \to P_{\varphi} := \ket{\varphi} \langle \varphi |, \quad \text{in } \mathfrak{S}_{1}(\mathfrak{h})$$

i.e., a macroscopic fraction of the particles occupies the same one-particle state

Dynamical Problem •000000000

Conclusion 00

INTRODUCTION

Dynamical Problem

CONCLUSION

Conclusion 00

Setting

We consider a trapped system in $\Lambda = \left[-\frac{1}{2}, \frac{1}{2}\right]^3$ ($\mathfrak{h} = L^2(\Lambda)$)

$$H_{N} := \sum_{j=1}^{N} \left(-\Delta_{j} \right) + g_{N} N^{3\beta-1} \sum_{1 \leq j < k \leq N} v \left(N^{\beta} \left(\mathsf{x}_{j} - \mathsf{x}_{k} \right) \right)$$

The solution to the Schrödinger equation is

$$\begin{cases} i\partial_t \Psi_{N,t} = H_N \Psi_{N,t} \\ \Psi_{N,t} |_{t=0} = \Psi_{N,0} \end{cases}$$

Goal: understand whether complete BEC is preserved by time evolution, i.e.

$$\gamma^{(1)}_{\Psi_{N,0}} o P_{\varphi_0} \text{ in } \mathfrak{S}_1(\mathfrak{h}) \Longrightarrow \gamma^{(1)}_{\Psi_{N,t}} o P_{\varphi^{\mathrm{GP}}_t} \text{ in } \mathfrak{S}_1(\mathfrak{h})$$

Conclusion 00

GROSS-PITAEVSKII EQUATION

Expected limiting equation: the time-dependent GP equation

$$\begin{cases} i\partial_t \varphi_t^{\rm GP} = -\Delta \varphi_t^{\rm GP} + g_N |\varphi_t^{\rm GP}|^2 \varphi_t^{\rm GP} \\ \varphi_t^{\rm GP} \big|_{t=0} = \varphi_0 \end{cases}$$

Energy of the system:

$$\begin{split} \mathcal{E}^{\text{GP}}\left[\varphi\right] &= \int_{\Lambda} d\mathsf{x} \; \left(\frac{1}{2} \left|\nabla\varphi\left(\mathsf{x}\right)\right|^{2} + \frac{g_{N}}{2} \left|\varphi\left(\mathsf{x}\right)\right|^{4}\right) \\ \mathcal{E}^{\text{GP}} &= \inf_{\|\varphi\|_{2} = 1} \mathcal{E}^{\text{GP}}\left[\varphi\right] \end{split}$$

Idea: for low energies the kinetic term is negligible if N is large

Dynamical Problem 000000000

Conclusion 00

THOMAS-FERMI ENERGY

Dropping the kinetic term we obtain the TF energy functional

$$\begin{split} \mathcal{E}^{\mathrm{TF}}\left[\rho\right] &= \frac{g_{N}}{2} \int_{\Lambda} d\mathbf{x} \ \rho^{2}\left(\mathbf{x}\right), \\ E^{\mathrm{TF}} &= \inf_{\|\rho\|_{1}=1, \ \rho \geq 0} \mathcal{E}^{\mathrm{TF}}\left[\rho\right] \end{split}$$

Fact: in a box $E^{\text{GP}} = E^{\text{TF}} = \frac{g_N}{2}$ (in \mathbb{R}^3 , $E^{\text{GP}} \approx E^{\text{TF}}$ at first order in N)

Conclusion 00

INTERMEDIATE EQUATION

To prove the approximation $\gamma_{\Psi_{N,t}}^{(1)} \approx P_{\varphi_t^{\text{GP}}}$ it is helpful to introduce an intermediate effective equation, the time-dependent Hartree (H) equation

We exploit $v_N * |\varphi|^2 \to |\varphi|^2$, but we need control on $\|\varphi\|_{\infty}$ indipendent on g_N

Conclusion 00

INTERMEDIATE EQUATION

To prove the approximation $\gamma_{\Psi_{N,t}}^{(1)} \approx P_{\varphi_t^{\text{GP}}}$ it is helpful to introduce an intermediate effective equation, the time-dependent Hartree (H) equation

$$\begin{cases} i\partial_{t}\varphi_{t}^{\mathrm{H}} = -\Delta\varphi_{t}^{\mathrm{H}} + g_{N}v_{N} * \left|\varphi_{t}^{\mathrm{H}}\right|^{2}\varphi_{t}^{\mathrm{H}} \\ \varphi_{t}^{\mathrm{H}}\big|_{t=0} = \varphi_{0} \end{cases}$$

We exploit $v_N * |\varphi|^2 \to |\varphi|^2$, but we need control on $\|\varphi\|_{\infty}$ indipendent on g_N

Conclusion 00

Conjecture

Let φ_0 be the initial datum of the GP equation

$$arphi_{0}\in L^{\infty}\left(\Lambda
ight)\Longrightarrow\sup_{t\in\mathbb{R}}\left\Vert arphi_{t}^{\mathrm{H}}
ight\Vert _{\infty}\leq C$$

THEOREM

Assume that $v \in L^2\left(\mathbb{R}^3\right) \cap L^1\left(\mathbb{R}^3, xdx\right)$, the Conjecture holds true and

$$\begin{split} \left\| \gamma_{\Psi_{N,0}}^{(1)} - P_{\varphi_0^{\mathrm{GP}}} \right\|_{\mathfrak{S}^1} \ll N^{-\frac{1-3\beta}{2}} \\ \mathcal{E}^{\mathrm{GP}} \left[\varphi_0 \right] - E^{\mathrm{GP}} \ll \xi_N \leq \sqrt{g_N} \\ g_N \ll \log N \end{split}$$

then for each $t \in \mathbb{R}$ and for any $\beta \in [0, 1/6)$ there is *complete BEC* on φ_t^{GP} , i.e.

$$\left\|\gamma_{\Psi_{N,t}}^{(1)} - P_{\varphi_t^{\mathrm{GP}}}\right\|_{\mathfrak{S}^1} \ll 1$$

Remarks

- Similar result is achievable also in d = 2
- Open question is to go beyond $\beta=1/6;$ also related to stationary problem limitations
- (HP1) means that there is BEC in the initial datum $\Psi_{\textit{N},0}$ on the state φ_0
- (HP2) means that the GP initial datum φ_0 is close to a ground state in energy: important to prove that the Hartree solution is close to the GP solution
- (HP3) is necessary to prove condensation on a state $\varphi_t^{\rm H};$ still allows for a dilute limit

$$\left\|\gamma_{\Psi_{N,0}}^{(1)} - P_{\varphi_0^{\mathrm{GP}}}\right\|_{\mathfrak{S}^1} \ll N^{-\frac{1-3\beta}{2}} \tag{HP1}$$

- $\mathcal{E}^{\mathrm{GP}}\left[\varphi_{0}\right] E^{\mathrm{GP}} \ll \xi_{N} \le \sqrt{g_{N}}$ (HP2)
 - $g_N \ll \log N$ (HP3)

Conclusion 00

Sketch of the proof

Two parts:

- Approximate the $\gamma_{\Psi_{N,t}}^{(1)}$ with $P_{\varphi_t^{\mathrm{H}}}$
- Estimate the difference between φ^{H}_t and φ^{GP}_t

Main ingredients:

- Tools developed in [P11]
- Energy estimates for the one-particle problem

[P11] Pickl, "A Simple Derivation of Mean Field Limits for Quantum Systems"

Conclusion 00

MANY-BODY TO HARTREE

Similarly as in **[P11]**, the goal is obtaining a Grönwall-type estimate for

$$\alpha_{t} := 1 - \left\langle \Psi_{\textit{N},t}, \left(\left| \varphi_{t}^{\mathrm{H}} \right\rangle \left\langle \varphi_{t}^{\mathrm{H}} \right| \right)_{1} \Psi_{\textit{N},t} \right\rangle$$

We need to estimate terms of the form

$$\left\| \mathbf{v}_{N} * \left| \varphi_{t}^{\mathrm{H}} \right|^{2} \right\|_{\infty} \leq \left\| \mathbf{v} \right\|_{1} \left\| \varphi_{t}^{\mathrm{H}} \right\|_{\infty}^{2}$$

Using the Conjecture we get the desired result; if we do not assume it, we can only use the kinetic energy: *we do not reach the time scale of vortices* (compare with **[JS15]**)

[[]JS15] Jerrard, Smets, "Vortex dynamics for the two-dimensional non-homogeneous Gross-Pitaevskii equation"

Conclusion 00

HARTREE TO GROSS-PITAEVSKII

$$\begin{split} \partial_{t} \left\| \varphi_{t}^{\mathrm{GP}} - \varphi_{t}^{\mathrm{H}} \right\|_{2}^{2} &\leq g_{N} \left| \mathrm{Im} \langle \varphi_{t}^{\mathrm{H}}, \left(\left| \varphi_{t}^{\mathrm{GP}} \right|^{2} - v_{N} * \left| \varphi_{t}^{\mathrm{H}} \right|^{2} \right) \varphi_{t}^{\mathrm{GP}} \rangle \right| \\ &\leq g_{N} \left| \langle \varphi_{t}^{\mathrm{H}}, \left(\left| \varphi_{t}^{\mathrm{GP}} \right|^{2} - \left| \varphi_{t}^{\mathrm{H}} \right|^{2} \right) \varphi_{t}^{\mathrm{GP}} \rangle \right| \\ &+ g_{N} \left| \langle \varphi_{t}^{\mathrm{H}}, \left(\left| \varphi_{t}^{\mathrm{H}} \right|^{2} - v_{N} * \left| \varphi_{t}^{\mathrm{H}} \right|^{2} \right) \varphi_{t}^{\mathrm{GP}} \rangle \right| \end{split}$$

To prove convergence of this last two terms use L^2 difference of the square of the solutions (energy bound) for the first term and $v_N \rightarrow \delta$ as a distribution for the second one:

$$\begin{split} \left| \langle \varphi_t^{\mathrm{H}}, \left(\left| \varphi_t^{\mathrm{H}} \right|^2 - v_{\mathcal{N}} * \left| \varphi_t^{\mathrm{H}} \right|^2 \right) \varphi_t^{\mathrm{GP}} \rangle \right| &\leq \\ &\leq \frac{C}{\mathcal{N}^{\beta}} \left\| \nabla \varphi_t^{\mathrm{H}} \right\|_2 \left\| \varphi_t^{\mathrm{H}} \right\|_{\infty} \left\| \varphi_t^{\mathrm{H}} \right\|_4 \left\| \varphi_t^{\mathrm{GP}} \right\|_4 \end{split}$$

Dynamical Problem 000000000 CONCLUSION 00

INTRODUCTION

Dynamical Problem

CONCLUSION

INTRODUCTION	
0000000	

CONCLUSION 0

CONCLUSION

- Condensation is preserved under suitable assumptions of regularity on the solution
 - Q: How to prove the Conjecture?
 - **Q:** Vortices are encoded in the vorticity measure, which depends on the gradient of the solution; can a similar result be proven in a stronger (e.g. H^1) norm?
- There is BEC in the Thomas Fermi limit, at least in a scaling with $\beta < 1/3$ (work in progress with M. Correggi and E. L. Giacomelli)

Q: Can we extend the result for $\beta > 1/6$?

INTRODUCTION	
0000000	

CONCLUSION 00

CONCLUSION

- Condensation is preserved under suitable assumptions of regularity on the solution
 - Q: How to prove the Conjecture?
 - **Q:** Vortices are encoded in the vorticity measure, which depends on the gradient of the solution; can a similar result be proven in a stronger (e.g. H^1) norm?
- There is BEC in the Thomas Fermi limit, at least in a scaling with $\beta < 1/3$ (work in progress with M. Correggi and E. L. Giacomelli)

Q: Can we extend the result for $\beta > 1/6$?

Thanks for the attention!