## Advances in integrable $\eta$ -deformations of superstrings

Fiona Seibold





- The 7th SwissMAP meeting -07.09.2020

### Outline

### l Integrability

> Hamiltonian mechanics, 2D field theories, string theory

### 2 q-deformations

Drinfel'd Jimbo quantum group, case of superalgebras

- 3 *q*-deformations of AdS<sub>5</sub> × S<sup>5</sup>
  ➤ string theory? quantum integrability?
- 4 Conclusions and outlook

### 1 Integrability

A theory is integrable when there are "enough conserved charges"

A theory is integrable when there are "enough conserved charges"

Hamiltonian system with N d.o.f and N independent conserved quantities  $F_j$  in involution

$$\{F_j, F_k\} = 0, \qquad j, k = 1, \dots N$$

- $\rightarrow$  Liouville integrable
- $\rightarrow$  Can be solved exactly
- $\rightarrow$  Lax pair (L, M)

e.o.m 
$$\Leftrightarrow \frac{\mathrm{d}L}{\mathrm{d}t} - [M, L] = 0$$



The Liouville Arnol'd theorem, Alexei Tsygvintsev

A theory is integrable when there are "enough conserved charges"

Field theories have  $\infty$  many d.o.f

For 2D Field theories:

- $\rightarrow$  Lax pair
- $\rightarrow$  Factorised scattering



In 1D: e.o.m 
$$\Leftrightarrow \frac{dL}{dt} - [L, M] = 0$$

In 2D: e.o.m 
$$\Leftrightarrow \partial_{\tau} \mathscr{L}_{\sigma} - \partial_{\sigma} \mathscr{L}_{\tau} - [\mathscr{L}_{\sigma}, \mathscr{L}_{\tau}] = 0$$

### 2D FT : Quantum integrability as factorised scattering

• No particle production

• Transmitted momenta

• Factorisation













 $S_{23}S_{13}S_{12}$ 

S<sub>12</sub>S<sub>13</sub>S<sub>23</sub>

quantum Yang-Baxter equation

### Integrability in string theory

String theory as a 2D sigma model



### Integrability in string theory

String theory as a 2D sigma model





- Applied with great success for AdS<sub>5</sub> × S<sup>5</sup> superstrings, ...
- Goal: go beyond this most supersymmetric case!

### *q*-deformations

- Lie algebras are rigid objects that do not admit deformations
- Idea: consider larger structures

Universal enveloping algebras Hopf algebras

 $\Rightarrow$  Drinfel'd Jimbo type quantum group

- $\mathcal{A}$  vector space over a field K
- $\mu$  product
- $\eta$  unit
- $\Delta$  coproduct
- $\epsilon$  counit
- *S* antipode map

 $\mathcal A$  is a Hopf algebra if

- $(\mathscr{A}, \mu, \eta)$  is an associative algebra
- $(\mathscr{A}, \Delta, \epsilon)$  is a coalgebra
- $\mu(S \otimes id)\Delta(X) = \mu(id \otimes S)\Delta(X) = \eta \epsilon(X)$

#### Quantum group

• Any Lie algebra can be promoted to a Hopf algebra

$$\begin{aligned} [H_j, E_k] &= A_{jk} E_k & \Delta(H_j) = H_j \otimes 1 + 1 \otimes H_j & S(H_j) = -H_j \\ [H_j, F_k] &= -A_{jk} F_k & \Delta(E_j) = E_j \otimes 1 + 1 \otimes E_j & S(E_j) = -E_j \\ [E_j, F_k] &= \delta_{jk} H_k & \Delta(F_j) = F_j \otimes 1 + 1 \otimes F_j & S(F_j) = -F_j \end{aligned}$$

The associated Drinfel'd Jimbo quantum group is

$$\begin{split} & [H_j, E_k] = A_{jk} E_k & \Delta(H_j) = H_j \otimes 1 + 1 \otimes H_j & S(H_j) = -H_j \\ & [H_j, F_k] = -A_{jk} F_k & \Delta(E_j) = E_j \otimes 1 + q^{-H_j} \otimes E_j & S(E_j) = -q^{H_j} E_j \\ & [E_j, F_k] = \delta_{jk} \frac{q^{H_j} - q^{-H_j}}{q - q^{-1}} & \Delta(F_j) = F_j \otimes q^{H_j} + 1 \otimes F_j & S(F_j) = -F_j q^{-H_j} \end{split}$$

[Klimcik '02 '08] [Delduc Magro Vicedo '13 '14] [Sfetsos '13] [Hollowood, Miramontes and Schmidtt '14]

 $q \in \mathbb{R} \rightarrow$  " $\eta$ " deformations

 $q \in e^{i\mathbb{R}} \longrightarrow ``\lambda"$  deformations

. . .

• Example:  $g = \mathfrak{sl}(2|2)$ 



$$STr[M] = Tr[M_{11}] - Tr[M_{22}] = 0$$

### Simple roots



Cartan matrix  $\begin{pmatrix} -2 + 1 & 0 \\ +1 & 0 & -1 \\ 0 & -1 + 2 \end{pmatrix}$ 

Dynkin diagram





#### Quantum groups

• Effect of the choice of inequivalent CW bases for superalgebras

 $(\mathfrak{g}, \mathrm{CW})$   $(\mathfrak{g}, \mathrm{CW'})$ 

• The associative algebras are isomorphic

 $[\omega(X), \omega(Y)] = \omega([X, Y])$ 

- The coproducts are related by a twist  $(\omega \otimes \omega)\Delta(X) = F^{-1}\Delta'(\omega(X))F$
- What are the physical implications of this twist?
  - $\rightarrow$  string theory?
  - $\rightarrow$  spectrum?



# **3** q-deformations<sup>\*</sup> of the AdS<sub>5</sub> × S<sup>5</sup> superstring

\*  $q \in \mathbb{R}$ 

### The AdS $_5 \times$ S<sup>5</sup> superstring

String theory as a 2D sigma model



• Symmetry algebra psu(2,2|4) has many Dynkin diagrams



:





#### Effect of twist on the background

- Symmetry algebra psu(2,2|4) has many Dynkin diagrams
- String theory?

[Hoare Seibold '18]









- qYBE satisfied in both cases
- expansion matches the perturbative calculation in both cases

### 4 Conclusions & outlook

An efficient way to generate new integrable theories is to deform already known ones

• A particular type of such deformations promotes the symmetry algebra to a quantum group: q-deformations

- ◆ NLSM realisation: η-deformations ( $q \in \mathbb{R}$ ), λ-deformations ( $q \in e^{i\mathbb{R}}$ )
- $\eta$ -deformations are not unique for superalgebras
- Only one type of  $\eta$ -deformation is a string theory
- The exact S matrices are related by a twist

- How does the twist affect physical observables: spectrum, ...
- Better understand the Weyl anomaly in  $\eta$ -deformations
- Connections between  $\eta$  and  $\lambda$  deformations: Poisson-Lie duality
- Understand q-deformations in the context of holography

Thank you!

Special thanks to my PhD supervisor Prof. N. Beisert and my collaborators Dr. B. Hoare, Dr. A. Sfondrini, Dr. S. van Tongeren and Y. Zimmermann!