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1 Integrability

ã Hamiltonian mechanics, 2D field theories, string theory

2 q -deformations

ã Drinfel’d Jimbo quantum group, case of superalgebras

3 q -deformations of AdS5× S5

ã string theory? quantum integrability?

4 Conclusions and outlook
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A theory is integrable when there are “enough conserved charges”
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A theory is integrable when there are “enough conserved charges”

Hamiltonian system with N d.o.f and N independent conserved quantities
F j in involution

{F j, Fk}= 0, j, k = 1, . . . N

→ Liouville integrable

→ Can be solved exactly

→ Lax pair (L, M)

e.o.m ⇔ dL
dt − [M , L] = 0

The Liouville Arnol’d theorem, Alexei Tsygvintsev

Integrability : Hamiltonian mechanics 4



A theory is integrable when there are “enough conserved charges”

Field theories have∞ many d.o.f

For 2D Field theories:

→ Lax pair

→ Factorised scattering

Integrability : Field theory 5



In 1D: e.o.m ⇔ dL
dt
− [L, M] = 0

In 2D: e.o.m ⇔ ∂τLσ − ∂σLτ− [Lσ,Lτ] = 0

2D FT : Classical integrability as existence of Lax pair 6



• No particle production 7

• Transmitted momenta

p1 p2 p3
p4

p4
p3 p2 p1

• Factorisation
= Π

2D FT : Quantum integrability as factorised scattering 7
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2D FT : Quantum integrability as factorised scattering 8
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2D FT : Quantum integrability as factorised scattering 9
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quantum Yang-Baxter equation

2D FT : Quantum integrability as factorised scattering 10



String theory as a 2D sigma model

σ

τ

Xµ(τ,σ)

Integrability in string theory 11



String theory as a 2D sigma model

σ

τ

Xµ(τ,σ)

•

String energy spectrum

Integrability in string theory 12



Integrable theory

find Lax connection

Background

Perturbative S matrix

Symmetries

Exact S matrix
perturbative expansion

check qYBEcheck qYBE

check SUGRA

Spectrum

• Applied with great success for AdS5× S5 superstrings, ...

• Goal: go beyond this most supersymmetric case!

The integrability programme 13



2 q-deformations
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• Lie algebras are rigid objects that do not admit deformations

• Idea: consider larger structures

Universal enveloping algebras

Hopf algebras

⇒ Drinfel’d Jimbo type quantum group

Quantum group 15



A vector space over a field K
µ product
η unit
∆ coproduct
ε counit
S antipode map

A is a Hopf algebra if

• (A ,µ,η) is an associative algebra

• (A ,∆,ε) is a coalgebra

• µ(S ⊗ id)∆(X ) = µ(id ⊗ S)∆(X ) = ηε(X )

Quantum group 16



• Any Lie algebra can be promoted to a Hopf algebra

[H j, Ek] = A jkEk ∆(H j) = H j ⊗ 1+ 1⊗H j S(H j) = −H j

[H j, Fk] = −A jkFk ∆(E j) = E j ⊗ 1+ 1⊗ E j S(E j) = −E j

[E j, Fk] = δ jkHk ∆(F j) = F j ⊗ 1+ 1⊗ F j S(F j) = −F j

• The associated Drinfel’d Jimbo quantum group is

[H j, Ek] = A jkEk ∆(H j) = H j ⊗ 1+ 1⊗H j S(H j) = −H j

[H j, Fk] = −A jkFk ∆(E j) = E j ⊗ 1+ q−H j ⊗ E j S(E j) = −qH j E j

[E j, Fk] = δ jk
qH j−q−H j

q−q−1 ∆(F j) = F j ⊗ qH j + 1⊗ F j S(F j) = −F jq
−H j

Quantum group 17
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q ∈R → “η” deformations

q ∈ eiR → “λ” deformations

q-deformations 18



• Example: g= sl(2|2)

Bosonic generators

Fermionic generators







M11 M12

M21 M22 2
4

2

4

STr[M] = Tr[M11]− Tr[M22] = 0

Cartan-Weyl bases for superalgebras 19



Simple
roots




0 + + +
− 0 + +
− − 0 +
− − − 0




Cartan
matrix



−2 +1 0
+1 0 −1
0 −1 +2




Dynkin
diagram
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+1 0 −1
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0 +1 0
+1 −2 +1
0 +1 0






0 +1 0
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0 −1 0
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diagram

Cartan-Weyl bases for superalgebras 21



• Effect of the choice of inequivalent CW bases for superalgebras

(g, CW) (g, CW’)

• The associative algebras are isomorphic

[ω(X ),ω(Y )] =ω([X , Y ])

• The coproducts are related by a twist

(ω⊗ω)∆(X ) = F−1∆′(ω(X ))F

• What are the physical implications of this twist?

→ string theory?
→ spectrum?

Quantum groups 22



3
q-deformations of the
AdS5× S5 superstring

*

* q ∈R
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String theory as a 2D sigma model

σ

τ

Xµ(τ,σ)

AdS5 =
SO(2,4)
SO(1,4) =

SU(2,2)
SO(1,4) S5 = SO(6)

SO(5) =
SU(4)
SO(5)

PSU(2,2|4)
SO(1,4)×SO(5)

The AdS5× S5 superstring 24



• Symmetry algebra psu(2,2|4) has many Dynkin diagrams

...

Effect of twist on the background 25



• Symmetry algebra psu(2,2|4) has many Dynkin diagrams

• String theory?

7

7
... ...

7

3

[Hoare Seibold ’18]

Effect of twist on the background 26



•

∆op(X )S = S∆(X )

S′ = F opSF−1

Effect of twist on the S matrix 27



•

∆op(X )S = S∆(X )

S′ = F opSF−1

Effect of twist on the S matrix 28



•

∆op(X )S = S∆(X )

S′ = F opSF−1

• qYBE satisfied in both cases

• expansion matches the perturbative calculation in both cases

[Beisert, Koroteev ’08]
[Arutyunov, Borsato, Frolov ’15]

[Seibold, van Tongeren, Zimmermann ’20]

Effect of twist on the S matrix 29



4 Conclusions & outlook
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� An efficient way to generate new integrable theories is to deform already
known ones

� A particular type of such deformations promotes the symmetry algebra
to a quantum group: q-deformations

� NLSM realisation: η-deformations (q ∈R), λ-deformations (q ∈ eiR)

� η-deformations are not unique for superalgebras

� The exact S matrices are related by a twist

� Only one type of η-deformation is a string theory

Conclusions 31



� How does the twist affect physical observables: spectrum, ...

� Better understand the Weyl anomaly in η-deformations

� Connections between η and λ deformations: Poisson-Lie duality

� Understand q-deformations in the context of holography

Open problems 32
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