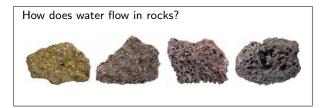
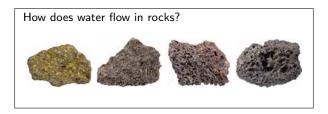
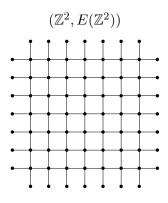
RUSSO-SEYMOUR-WELSH THEORY FOR PLANAR PERCOLATION

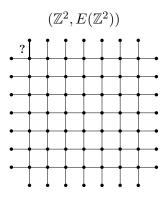
Vincent TASSION

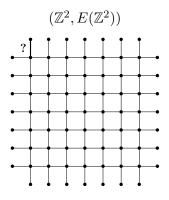


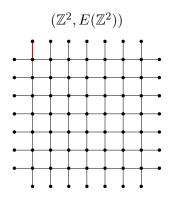

SwissMAP meeting, September 9, 2020

Percolation: how does a fluid propagate in a random medium?

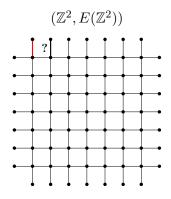

Percolation: how does a fluid propagate in a random medium?


Percolation: how does a fluid propagate in a random medium?

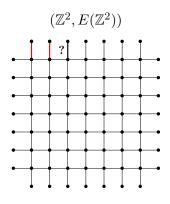




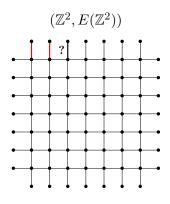
Parameter: $0 \le p \le 1$.


Parameter:
$$0 \le p \le 1$$

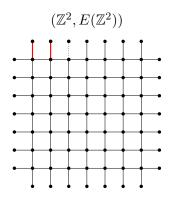
An edge is \rightarrow **open** with probability p.


Parameter:
$$0 \le p \le 1$$

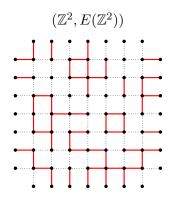
An edge is \rightarrow **open** with probability p.


Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow **open** with probability p.


Parameter:
$$0 \le p \le 1$$

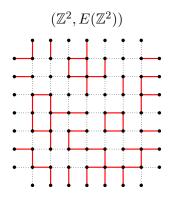
An edge is \rightarrow **open** with probability p.


Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow **open** with probability p.

Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow **open** with probability p.

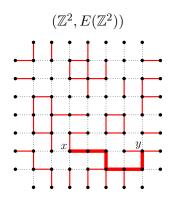


Parameter: $0 \le p \le 1$

An edge is \rightarrow **open** with probability p.

 \rightarrow closed with probability 1-p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^2)$


Parameter: $0 \le p \le 1$

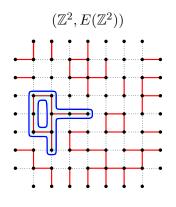
An edge is \rightarrow **open** with probability p.

 \rightarrow closed with probability 1-p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^2)$

 $P_p := \mathsf{law} \; \mathsf{of} \; \omega.$

Parameter: $0 \le p \le 1$


An edge is \rightarrow **open** with probability p.

 \rightarrow closed with probability 1-p.

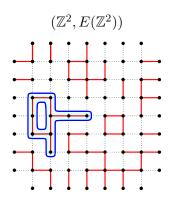
Percolation configuration: $\omega \subset E(\mathbb{Z}^2)$

 $P_p := \text{law of } \omega.$

Open path: path made of open edges.

Parameter: $0 \le p \le 1$

An edge is \rightarrow **open** with probability p.


 \rightarrow closed with probability 1-p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^2)$

 $P_p := \text{law of } \omega.$

Open path: path made of open edges.

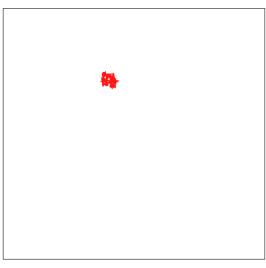
Cluster: connected component of (\mathbb{Z}^2, ω) .

Parameter: $0 \le p \le 1$

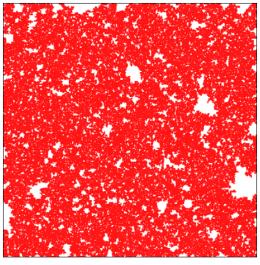
An edge is \rightarrow **open** with probability p.

 \rightarrow closed with probability 1-p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^2)$

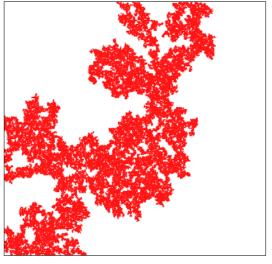

 $P_p := \text{law of } \omega.$

Open path: path made of open edges.

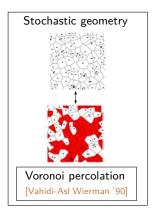

Cluster: connected component of (\mathbb{Z}^2, ω) .

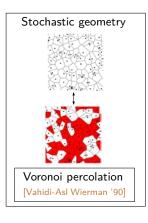
QUESTION: Is there an infinite cluster?

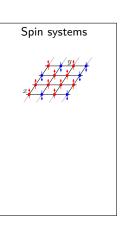
Largest cluster in a box for Bernoulli percolation on \mathbb{Z}^2

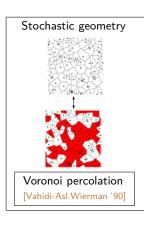


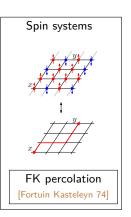
Largest cluster in a box for Bernoulli percolation on \mathbb{Z}^2

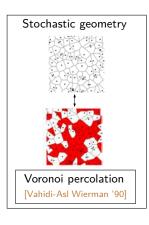

 $p > p_c$

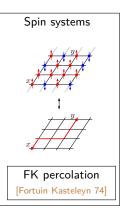

Largest cluster in a box for Bernoulli percolation on \mathbb{Z}^2

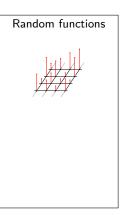


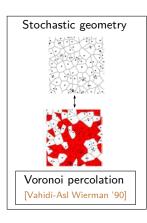

 $p = p_c$

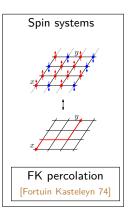


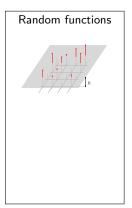


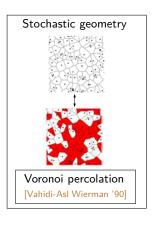


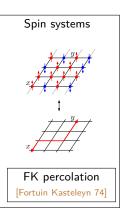


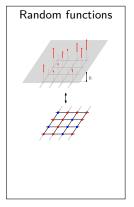


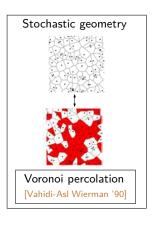


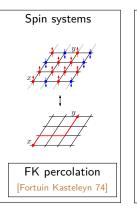


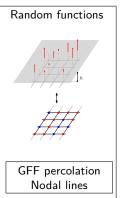












Outlook of the talk

1. RSW theory for Bernoulli percolation on $\ensuremath{\mathbb{Z}}^2$

[Russo '78][Seymour Welsh '78]

Outlook of the talk

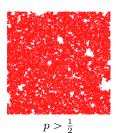
1. RSW theory for Bernoulli percolation on $\ensuremath{\mathbb{Z}}^2$

[Russo '78][Seymour Welsh '78]

2. RSW theory for dependent planar models

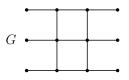
[Köhler-Schindler '20+]

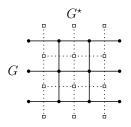
1. RSW theory for Bernoulli percolation on \mathbb{Z}^2 .


Phase transition in dimension 2

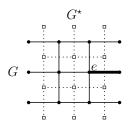
Theorem [Kesten '80]

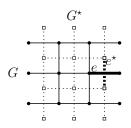
For Bernoulli percolation on \mathbb{Z}^2 , we have

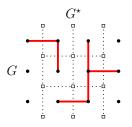

$$p_c = \frac{1}{2}.$$

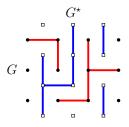

What is special about p = 1/2?

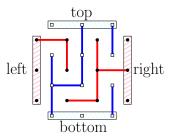
Planar duality:

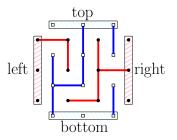

What is special about p = 1/2?

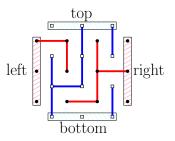

Planar duality:



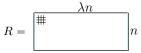

What is special about p = 1/2?


Planar duality:





Consequence: For every
$$n$$
, $P_p \left[\bigcap_{n}^{n} n \right] + P_p \left[\bigcap_{n}^{n} n \right] = 1$.



Consequence: For every
$$n$$
, $P_p \left[\begin{array}{c} n \\ -1 \end{array} \right] + P_p \left[\begin{array}{c} n \\ -1 \end{array} \right] = 1$.

$$ightharpoonup$$
 For $p=1/2$, $\left| P_p \left[\begin{array}{c} n \\ \\ \end{array} \right] = 1/2$.

Crossing probabilities

• A rectangle of aspect ratio $\lambda > 0$:

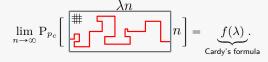
Crossing probabilities

• A rectangle of aspect ratio $\lambda > 0$:

$$R = \begin{bmatrix} \frac{\lambda n}{} \\ \end{bmatrix} r$$

• A crossing probability at parameter *p*:

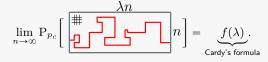
$$\mathrm{P}_p\Big[\begin{tabular}{ll} \hline \# & \lambda n \\ \hline \\ \mathrm{P}_p\Big[\begin{tabular}{ll} \hline \# & L \\ \hline \end{bmatrix} = \mathrm{P}_p\Big[\begin{tabular}{ll} \hline \\ \mathrm{In} & R \\ \hline \end{bmatrix} \end{tabular} \begin{tabular}{ll} \hline \\ \mathrm{oright.} \\ \hline \end{bmatrix}.$$


Conjecture: critical behavior of the crossing probabilities

Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

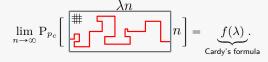
$$\lim_{n \to \infty} \mathbf{P}_{p_c} \bigg[\underbrace{ \frac{\lambda n}{\| \mathbf{I} \|_{p_c}^2}}_{\text{Cardy's formul}} n \bigg] = \underbrace{f(\lambda)}_{\text{Cardy's formul}}.$$

Conjecture: critical behavior of the crossing probabilities


Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

•
$$0 < f(\lambda) < 1$$
,

Conjecture: critical behavior of the crossing probabilities


Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

- $0 < f(\lambda) < 1$,
- Universality,

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

- $0 < f(\lambda) < 1$,
- Universality,
- Conformal invariance.

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

$$\lim_{n \to \infty} \mathbf{P}_{p_c} \left[\begin{array}{c} \frac{\lambda n}{\| \mathbf{p}_c \|_{\infty}} \\ \frac{1}{\| \mathbf{p}_c \|_{\infty}} \end{array} \right] = \underbrace{f(\lambda)}_{\mathsf{Cardy's formul}} .$$

Properties of Cardy's formula:

- $0 < f(\lambda) < 1$,
- Universality,
- Conformal invariance.

For the triangular lattice:

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

$$\lim_{n \to \infty} \mathbf{P}_{p_c} \left[\begin{array}{c} \frac{\lambda n}{ } \\ \\ - \\ \end{array} \right] = \underbrace{f(\lambda)}_{\mathsf{Cardy's formul}} .$$

Properties of Cardy's formula:

- $0 < f(\lambda) < 1$,
- Universality,
- Conformal invariance.

For the triangular lattice:

Cardy's formula and conformal invariance, [Smirnov '01]

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda > 0$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

$$\lim_{n \to \infty} \mathbf{P}_{p_c} \left[\begin{array}{c} \lambda n \\ \\ \end{array} \right] = \underbrace{f(\lambda)}_{\mathsf{Cardy's formul}} n$$

Properties of Cardy's formula:

- $0 < f(\lambda) < 1$,
- Universality,
- Conformal invariance.

For the triangular lattice:

- Cardy's formula and conformal invariance, [Smirnov '01]
- Critical exponents

$$\mathrm{P}_{p_c}\Big[egin{array}{c} \mathrm{I} \end{array}\Big] = n^{-5/48 + o(1)}.$$
 [Lawler Schramm Werner '02]

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda > 0$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

$$c(\lambda) \leqslant P_{p_c} \left[\begin{array}{c} \lambda n \\ \\ \end{array} \right] \leqslant 1 - c(\lambda).$$

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda > 0$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

$$c(\lambda) \leqslant P_{p_c} \left[\begin{array}{c} \lambda n \\ \\ \end{array} \right] \leqslant 1 - c(\lambda).$$

Applications:

Bounds on critical exponents,

→
$$n^{-c_1} \le P_{p_c} \left[\bigcap_{i=1}^{n} \right] \le n^{-c_2}, c_1, c_2 > 0.$$

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda > 0$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

$$c(\lambda) \leqslant P_{p_c} \left[\begin{array}{c} \lambda n \\ \\ \end{array} \right] \leqslant 1 - c(\lambda).$$

Applications:

Bounds on critical exponents,

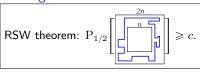
→
$$n^{-c_1} \le P_{p_c} \left[\bigcap_{c_1} \right] \le n^{-c_2}, c_1, c_2 > 0.$$

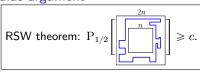
• Study of near-critical regime ($p=p_c\pm\varepsilon$),

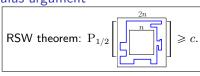
Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

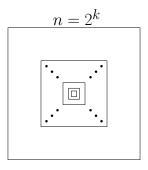
RSW theorem [Russo 78] [Seymour Welsh 78]

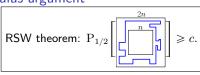
Fix $\lambda > 0$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

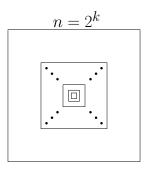

$$c(\lambda) \leqslant P_{p_c} \left[\begin{array}{c} \lambda n \\ \\ \end{array} \right] \leqslant 1 - c(\lambda).$$

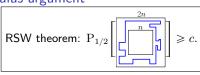

Applications:

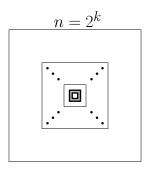

• Bounds on critical exponents,

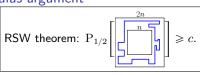

→
$$n^{-c_1} \le P_{p_c} \left[\bigcap_{n=0}^{\infty} \right] \le n^{-c_2}, c_1, c_2 > 0.$$

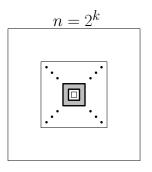

- Study of near-critical regime $(p = p_c \pm \varepsilon)$,
- Tightness arguments for the scaling limit.

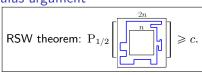


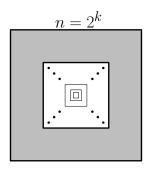


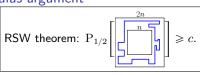


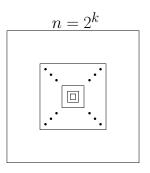


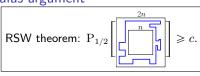

$$P_p\left[\begin{array}{c} n \\ \\ \end{array} \right] \leqslant P_p\left[NO \begin{array}{c} \\ \end{array} \right]$$

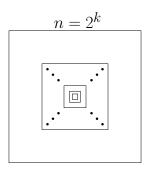


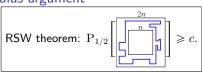

$$P_p\left[\begin{array}{|c|c|} \hline & & \\ & & \\ \hline & & \\ \end{array} \right] \leqslant P_p\left[NO \begin{array}{|c|c|} \hline & & \\ \hline & & \\ \end{array} \right]$$

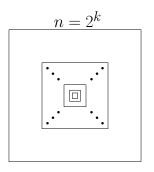


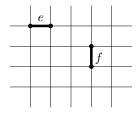

$$P_p\left[\begin{array}{|c|c|} \hline & & \\ & & \\ \hline & & \\ \end{array} \right] \leqslant P_p\left[NO \begin{array}{|c|c|} \hline & & \\ \hline & & \\ \end{array} \right]$$

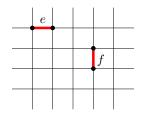



$$P_p\left[\begin{array}{c} n \\ \\ \end{array} \right] \leqslant P_p\left[NO \begin{array}{c} \\ \end{array} \right]$$



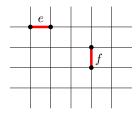

$$P_p\left[\begin{array}{|c|c|} \hline & & \\ & & \\ \hline & & \\ \end{array} \right] \leqslant P_p\left[NO \begin{array}{|c|c|} \hline & & \\ \hline & & \\ \end{array} \right]$$


$$P_p\left[\begin{array}{|c|} \\ \hline \\ \hline \\ \end{array} \right] \leqslant P_p\left[\text{NO} \left[\begin{array}{|c|} \\ \hline \\ \end{array} \right] \right] \leqslant (1-c)^{\log_2 n}$$



$$P_p\left[\bigcap_{n} P_p\left[NO\left[\bigcap_{n} P_p\left[1-c\right]^{\log_2 n} \leqslant \frac{1}{n^{c'}}\right]\right] \leqslant (1-c)^{\log_2 n} \leqslant \frac{1}{n^{c'}}.$$

Bernoulli percolation: an independent percolation model



Bernoulli percolation: an independent percolation model

$$\mathrm{P}_p[e,f \text{ open}] = p^2$$

Bernoulli percolation: an independent percolation model

 $\mathrm{P}_p\big[e,f \text{ open}\big] = p^2 = \mathrm{P}_p\big[e \text{ open}\big]\mathrm{P}_p\big[f \text{ open}\big].$

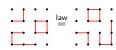
1. RSW theory for Bernoulli percolation on $\ensuremath{\mathbb{Z}}^2$

[Russo '78][Seymour Welsh '78]

1. RSW theory for Bernoulli percolation on \mathbb{Z}^2 [Russo '78][Seymour Welsh '78]

↓

2. The RSW lemma and its generalizations


[Köhler-Schindler T. 20+]

Two important properties of P_n

Symmetries:

 P_n is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Crossing events are positively correlated.

$$P_{p}\left[\begin{array}{c} 3n \\ 2 \\ 3n \end{array}\right] \geqslant \left(P_{p}\left[\begin{array}{c} 2n \\ 3n \\ 3n \end{array}\right]\right)^{3}$$

Proof of the RSW theorem

Goal: For
$$\lambda\geqslant 1$$
 and $n\geqslant 1$, $\mathbf{P}\left[\begin{array}{c} \lambda n \\ \\ \end{array}\right]\geqslant c(\lambda).$

Proof of the RSW theorem

Goal: For
$$\lambda \geqslant 1$$
 and $n \geqslant 1$, $\mathbf{P} \left[\begin{array}{c} \lambda n \\ \\ \end{array} \right] \geqslant c(\lambda)$.

Step 0 (self-duality):
$$P\left[\begin{array}{c} n \\ \end{array}\right] = 1/2.$$

Proof of the RSW theorem

Goal: For
$$\lambda\geqslant 1$$
 and $n\geqslant 1$, $\mathrm{P}\Big[\begin{tabular}{c} \# & \lambda n \\ \# & 1 \end{tabular}\Big]\geqslant c(\lambda).$

Step 0 (self-duality):
$$P\left[\begin{array}{c} n \\ \end{array}\right] = 1/2.$$

Step 2 (
$$\lambda=2$$
 suffices): $P\left[\begin{array}{c} 2n \\ \\ \end{array}\right] \geqslant c \stackrel{\mathsf{FKG}}{\Rightarrow} P\left[\begin{array}{c} 3n \\ \\ \end{array}\right] \geqslant c^3.$

Proof of the RSW theorem

Goal: For
$$\lambda\geqslant 1$$
 and $n\geqslant 1$, $\mathbf{P}\left[\begin{array}{c} \frac{\lambda n}{2} \\ \frac{1}{2} \\$

Step 0 (self-duality):
$$P\left[\begin{array}{c} n \\ \end{array}\right] = 1/2.$$

Step 1 (RSW Lemma):
$$P\left[\begin{array}{c} n \\ \end{array} \right] \geqslant c \Rightarrow P\left[\begin{array}{c} 2n \\ \end{array} \right] \geqslant c'.$$

Step 2 (
$$\lambda=2$$
 suffices): $P\left[\begin{array}{c} 2n \\ \\ \end{array}\right]\geqslant c \stackrel{\mathsf{FKG}}{\Rightarrow} P\left[\begin{array}{c} 3n \\ \\ \end{array}\right]\geqslant c^3.$

 $\mathbf{P} = \mathsf{general}$ percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

P=general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]



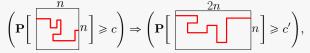
FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

where c' = f(c) independent of n.

P=general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]



FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

RSW Lemma

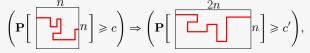
where c' = f(c) independent of n.

The RSW lemma holds for

Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]

P=general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]



FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

RSW Lemma

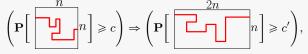
where c' = f(c) independent of n.

The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]

P=general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]



FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

RSW Lemma

where c' = f(c) independent of n.

The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
- Voronoi percolation [Bolóbas Riordan 06] [T 16]

P=general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

RSW Lemma

$$\left(\mathbf{P}\left[\begin{array}{c} n \\ -1 \end{array}\right] \geqslant c\right) \Rightarrow \left(\mathbf{P}\left[\begin{array}{c} 2n \\ -1 \end{array}\right] n\right] \geqslant c'\right),$$

where c' = f(c) independent of n.

The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
- Voronoi percolation [Bolóbas Riordan 06] [T 16]

All the proofs use **Symmetries** + **Positive correlations** + "something else".

General RSW Lemma.

General RSW Lemma.

RSW Lemma for symmetric positively correlated measures

[Köhler-Schindler T. 20+]

Let P be a planar percolation measure satisfying

- Symmetries,
- Positive correlations.

Then

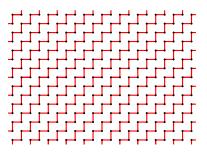
$$\left(\mathbf{P}\left[\begin{array}{c} n \\ \end{array}\right] \geqslant c\right) \Rightarrow \left(\mathbf{P}\left[\begin{array}{c} 2n \\ \end{array}\right] n\right] \geqslant c'\right),$$

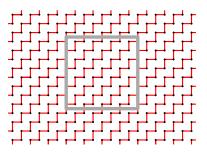
where c' = f(c) independent of n.

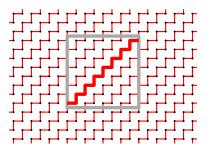
General RSW Lemma.

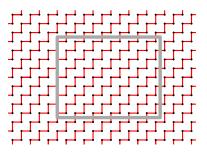
RSW Lemma for symmetric positively correlated measures

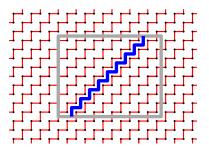
[Köhler-Schindler T. 20+]

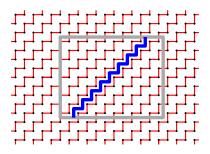

Let P be a planar percolation measure satisfying

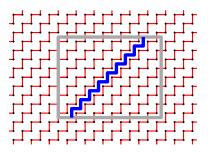

- Symmetries,
- Positive correlations.

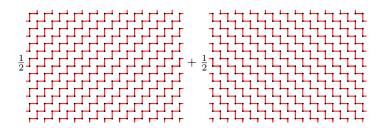

Then

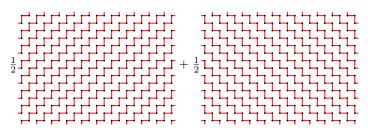

$$\left(\mathbf{P}\left[\begin{array}{c} n \\ \end{array}\right] \geqslant c\right) \Rightarrow \left(\mathbf{P}\left[\begin{array}{c} 2n \\ \end{array}\right] n\right] \geqslant c'\right),$$


where c' = f(c) independent of n.



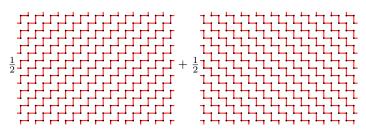






- → Squares always crossed, long horizontal rectangles never crossed,
- → Not reflection invariant.

Why are positive correlations important?



Why are positive correlations important?

→ Squares always crossed, long horizontal rectangles never crossed,

Why are positive correlations important?

- → Squares always crossed, long horizontal rectangles never crossed,
- → No positive correlation.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\bigcap_{n}^{\lambda_n} \left(1 - c(\lambda) \right) \right]$$

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }^{\lambda n} \right] \leqslant 1 - c(\lambda).$$

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }_{\lambda n} \right] \leqslant 1 - c(\lambda).$$

Perspectives:

 RSW for non positively correlated models.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }_{\lambda n} \right] \leqslant 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }^{\lambda n} \right] \leqslant 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

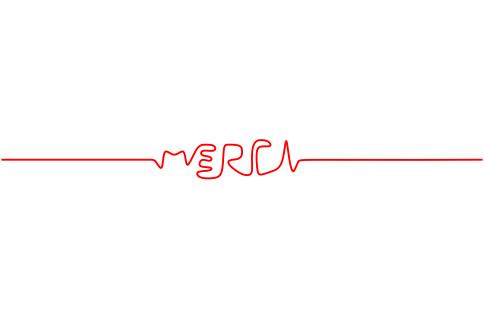
$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }_{n} \right] \leqslant 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }_{n} \right] \leqslant 1 - c(\lambda).$$


- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leqslant P_{p_c} \left[\underbrace{ }_{n} \right] \leqslant 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

