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Bernoulli percolation [Broadbent and Hammersley, 1957]

Parameter: [0 <p < 1|

An edge is =» open with probability p.
=» closed with probability 1 — p.

Percolation configuration: |w c E(Z?) |

P, = law of w.

Open path: path made of open edges.

Cluster: connected component of (72, w).

QUESTION: Is there an infinite cluster?
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Interactions with other fields

Stochastic geometry

Voronoi percolation
[Vahidi-Asl Wierman '90]

Spin systems

FK percolation
[Fortuin Kasteleyn 74]

Random functions

GFF percolation
Nodal lines
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1. RSW theory for Bernoulli percolation on Z?
[Russo '78][Seymour Welsh '78]

'

2. RSW theory for dependent planar models
[K&hler-Schindler '20+]
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1. RSW THEORY FOR BERNOULLI PERCOLATION ON Z2.




Phase transition in dimension 2

Theorem [Kesten '80]

For Bernoulli percolation on 72, we have

1
pc_2~

p< P>

(SIS
(SIS
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What is special about p = 1/27

Planar duality:
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What is special about p = 1/27?

Planar duality:

left right

Consequence: For every n, P,,[ % ;n ] + Pp[ U—yl_-'l n ] =1.

n

- Forp = 1/2, Pp[ ﬂn ] =1/2.
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Crossing probabilities

o A rectangle of aspect ratio \ > 0:
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Crossing probabilities

o A rectangle of aspect ratio \ > 0:
An

#

@ A crossing probability at parameter p:
An

p [ # n ] _p [ There exists an open path ]
P “ Pl in R from left to right. I’
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Cardy’s formula
Conjecture: critical behavior of the crossing probabilities

Fix A > 0. For critical Bernoulli percolation on Z2, we have
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AL R

Cardy's formula

Properties of Cardy’s formula:
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Cardy’s formula
Conjecture: critical behavior of the crossing probabilities

Fix A > 0. For critical Bernoulli percolation on Z2, we have

An

AL R

Cardy's formula

Properties of Cardy’s formula:
0o 0< f(N) <1,
@ Universality,
@ Conformal invariance.
For the triangular lattice:
@ Cardy’s formula and conformal invariance, [Smirnov '01]
o Critical ez<ponents

PPCI: E'J_L:I = p~0/48Fo() [Lawler Schramm Werner '02]
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Russo-Seymour-Welsh theory

Consider Bernoulli percolation on Z* at p. = 1/2.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix A > 0. There exists ¢(\) > 0 such that for every n > 1,
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Russo-Seymour-Welsh theory

Consider Bernoulli percolation on Z? at p. = 1/2.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix A > 0. There exists ¢(\) > 0 such that for every n > 1,

An

() < Ppc[ j;i&—'ln] <1-c(N).

@ Bounds on critical exponents,
n

2n P [ Qﬂ]<nic2 c1,c0 >0
Pec = 1 ’ .

@ Study of near-critical regime (p = p. + ¢),

Applications:

@ Tightness arguments for the scaling limit.
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Annulus argument
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Annulus argument
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Bernoulli percolation: an independent percolation model

‘Pp [e, f open] = p* = P,[e open]P,[f open]. ‘
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1. RSW theory for Bernoulli percolation on Z2
[Russo '78][Seymour Welsh '78]

'

2. The RSW lemma and its generalizations
[K&hler-Schindler T. 20+]




Two important properties of P,

Symmetries:

P, is invariant under translations, reflections and 7/2-rotation.
'_Ii:ilazwijl_' '_IijuaZWIIZI'
IO NI l_[

Positive correlations [Harris 60]:
Crossing events are positively correlated.
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Proof of the RSW theorem

An

Goal: For A>1landn >1, P[ ﬁ'jl:,_lin] = c(N).

13/18



Proof of the RSW theorem

An

Goal: For A >1landn>1,P fl—'%_l—l\n] = c(N).

Step 0 (self-duality): P[ L'E n] =1/2.

13/18



Proof of the RSW theorem

An

Goal: For A>1landn>1,P fl—'%_l—l\n]

n

Step 0 (self-duality): P[ L'E n] =1/2.

2n

Step 2 (A = 2 suffices): P[ E,—Lr

FKG

3n

,,]

\Y

13/18



Proof of the RSW theorem

Goal: For A >1landn>1,P fl—'%_l—l\n] = c(N).
n
Step 0 (self-duality): P[ L'E n] =1/2.
Step 1 (RSW Lemma): P[ % I_n] >c= P[ E,—Lrn] >c.
2n
Step 2 (A = 2 suffices): P[ E,—Lrn] >c s P[ IE\_"] > .
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RSW Lemma

(1

n

X

Va

.

FK percolation
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4>Q$G[

where ¢’ = f(c) independent of n.
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P=general percolation process in the plane.

.
N
Bernoulli percolation FK percolation Voronoi percolation
[Broadbent Hammersley, 57] [Fortuin Kasteleyn 74] [Vahidi-Asl Wierman "90]
RSW Lemma
n 2n

(p[ Y ) - (P[ Exim )

where ¢’ = f(c) independent of n.

The RSW lemma holds for
@ Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
@ FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
@ Voronoi percolation [Bolébas Riordan 06] [T 16]

All the proofs use Symmetries + Positive correlations + “something else”.
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Why are symmetries important?

:‘jﬂff:ﬁf

ﬁ

;Cvfrfrif

=» Squares always crossed, long horizontal rectangles never crossed,

=>» Not reflection invariant.
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Why are positive correlations important?

=» Squares always crossed, long horizontal rectangles never crossed,

N|—=
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Why are positive correlations important?

=» Squares always crossed, long horizontal rectangles never crossed,
=» No positive correlation.

N|—=
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Conclusion and outlook

Critical behavior of Bernoulli
percolation

v/ Robust RSW theory:

An
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