

# EQUIVARIANT TWISTED HKR ISOMORPHISM AND THE SMALL QUANTUM GROUP

Hemelsoet Nicolas University of Geneva





**Swiss National Science Foundation** 

## INTRODUCTION

This poster is about multiplicative structure of the center of the *small quantum group* (to be defined next paragraph). The center is realized in terms of certain sheaf cohomology on the Springer resolution in [1] and [2]. The present work reduces the question of the multiplicative structure of the center to the computation of certain cup-product in the sheaf cohomology of the flag varieties, which might be computable using geometric methods.

# RESULTS

The proof of theorem 1 is based on an equivalence of derived categories

 $D^b(\mathfrak{u}_0) \cong D^b(\operatorname{Coh}^{\mathbb{C}^*}(\widetilde{\mathcal{N}}))$ 

and the Hochschild-Kostant-Rosenberg theorem stating that for a smooth algebraic variety X there is a vector space isomorphism

$$HH^{\bullet}(X) := \operatorname{Ext}_{X \times X}^{\bullet}(\mathcal{O}_X, \mathcal{O}_X) \cong \bigoplus_{i+j=\bullet} H^i(X, \wedge^j TX) =: HT^{\bullet}(X)$$

However, the natural map is usually not a ring isomorphism. The following theorem explains

### THE SMALL QUANTUM GROUP

Let  $\mathfrak{g}$  be a semisimple complex Lie algebra, and  $\ell \geq 3$  be an odd integer  $\ell$ . To this data, Lusztig associated a finite-dimensional Hopf algebra  $\mathfrak{u}_{\ell}(\mathfrak{g})$ , called the *small quantum group*, which is a finite-dimensional version of a quantum group at root of unity. An important open question is a combinatorial description of the center of the small quantum group. We will focus here on the center of the principal block  $\mathfrak{u}_0 \subset \mathfrak{u}_{\ell}(\mathfrak{g})$ . Its structure is independent of  $\ell$ .

BEZRUKAVNIKOV-LACHOWSKA'S WORK

In [2], the main result was a geometric realization of  $z_0 := z(u_0)$ . We state the result and will explain the notation : how to obtain a ring isomorphism :

**Theorem 2 (Kontsevitch)** Let t be the Todd class of X. Then, twisting with  $t^{-1/2}$  gives a ring isomorphism  $HH^{\bullet}(X) \cong HT^{\bullet}(X)$ .

We verified that under a torus T action, the Todd class is T-invariant and the HKR isomorphism is T-equivariant. We obtain our main result :

**Theorem 3** [3] *The composition* 

$$HH^{\bullet}(\mathfrak{u}_{0}(\mathfrak{g})) \xrightarrow{HKR} \bigoplus_{i+j+k=\bullet} H^{i}(\widetilde{\mathcal{N}}, \wedge^{j}T\widetilde{\mathcal{N}})^{k} \xrightarrow{\langle -,Todd(\widetilde{\mathcal{N}})^{-1/2} \rangle} \bigoplus_{i+j+k=\bullet} H^{i}(\widetilde{\mathcal{N}}, \wedge^{j}T\widetilde{\mathcal{N}})^{k}$$

is a ring isomorphism.

**Corollary 1** Twisting by the Todd class of  $\widetilde{\mathcal{N}}$  gives a ring isomorphism

 $z_0 \cong \bigoplus_{i+j+k=0} H^i(\widetilde{\mathcal{N}}, \wedge^j(T\widetilde{\mathcal{N}}))^k$ 

The theorem 3 essentially follows from these two propositions (here X is a smooth complex algebraic variety acted upon by a torus T):

**Theorem 1** *There is an isomorphism of bigraded vector spaces* 

 $z_0 \cong \bigoplus_{i+j+k=0} H^i(\widetilde{\mathcal{N}}, \wedge^j(T\widetilde{\mathcal{N}}))^k$ 

Here,  $\widetilde{\mathcal{N}} = T^*(G/B)$  is the cotangent bundle of the flag variety G/B associated to the algebraic group of adjoint type G associated to  $\mathfrak{g}$  and a Borel subgroup  $B \subset G$ . The subscript k comes from a grading induced by the- $\mathbb{C}^*$  action by dilation on the fibers of the projection  $p: \widetilde{\mathcal{N}} \to G/B$ .

**Proposition 1** [3] In the derived category  $D^b(Coh(X))$ , the quasi-isomorphism

$$\iota^* \mathcal{O}_\Delta \cong \bigoplus_{i \in X} \Omega^i_X[i]$$

is T-equivariant.

Here  $\iota : \Delta \to X \times X$  is the inclusion map.

**Proposition 2** [3] Let  $t \in H\Omega^{\bullet}(X)$  be the Todd class of X. Then t is T-invariant.

In particular twisting the HKR isomorphism with  $t^{-1/2}$  gives a *T*-equivariant multiplicative isomorphism  $HH^{\bullet}(X) \cong HT^{\bullet}(X)$ . We hope that a similar statement holds where *T* is replaced by a reductive group *G*.

EXAMPLE

Let  $\mathfrak{g} = \mathfrak{sl}_3$ . The bigraded dimensions of  $z_0$  are as follows :



| l+j-2 |   | T |   |   |
|-------|---|---|---|---|
| i+j=4 | 2 | 3 | 1 |   |
| i+j=6 | 1 | 2 | 2 | 1 |

Geometrically, the first colum is canonically isomorphic to the cohomology of the flag variety, and the big diagonal correspond to the subalgebra spanned by the Poisson bivector field  $\tau \in H^0(\tilde{\mathcal{N}}, \wedge^2 T \tilde{\mathcal{N}})$ . An easy geometric argument shows :

**Proposition 3** [3] The subalgebra generated by  $H^*(G/B)$  and  $\tau$  is untwisted.

For  $\mathfrak{sl}_3$ , it describes the multiplicative structure of a codimension 1 subalgebra of  $z_0$ .

#### REFERENCES

R. Bezrukavnikov, A. Lachowska : *The center of the small quantum group and the Springer resolution*, https://arxiv.org/abs/math/0609819
A. Lachowska, Qi You, *The center of the small quantum groups I: the principal block in type A*, https://arxiv.org/abs/1604.07380.
N. Hemelsoet, *Twisted equivariant HKR theorem for torus action and the small quantum group*, preprint.