EQUIVARIANT TWISTED HKR ISOMORPHISM AND THE SMALL QUANTUM GROUP

Hemelsoet Nicolas
University of Geneva

INTRODUCTION

This poster is about multiplicative structure of the center of the small quantum group (to be defined next paragraph). The center is realized in terms of certain sheaf cohomology on the Springer resolution in [1] and [2]. The present work reduces the question of the multiplicative structure of the center to the computation of certain cup-product in the sheaf cohomology of the flag varieties, which might be computable using geometric methods.

THE SMALL QUANTUM GROUP

Let \mathfrak{g} be a semisimple complex Lie algebra, and $\ell \geq 3$ be an odd integer ℓ. To this data, Lusztig associated a finite-dimensional Hopf algebra $\mathfrak{u}_{\ell}(\mathfrak{g})$, called the small quantum group, which is a finite-dimensional version of a quantum group at root of unity. An important open question is a combinatorial description of the center of the small quantum group. We will focus here on the center of the principal block $\mathfrak{u}_{0} \subset \mathfrak{u}_{\ell}(\mathfrak{g})$. Its structure is independent of ℓ.

BEZRUKAVNIKOV-LACHOWSKA'S WORK

In [2], the main result was a geometric realization of $z_{0}:=z\left(\mathfrak{u}_{0}\right)$. We state the result and will explain the notation :

Theorem 1 There is an isomorphism of bigraded vector spaces

$$
z_{0} \cong \bigoplus_{i+j+k=0} H^{i}\left(\tilde{\mathcal{N}}, \wedge^{j}(T \tilde{\mathcal{N}})\right)^{k}
$$

Here, $\widetilde{\mathcal{N}}=T^{*}(G / B)$ is the cotangent bundle of the flag variety G / B associated to the algebraic group of adjoint type G associated to \mathfrak{g} and a Borel subgroup $B \subset G$. The subscript k comes from a grading induced by the- \mathbb{C}^{*} action by dilation on the fibers of the projection $p: \widetilde{\mathcal{N}} \rightarrow G / B$.

Results

The proof of theorem 1 is based on an equivalence of derived categories

$$
D^{b}\left(\mathfrak{u}_{0}\right) \cong D^{b}\left(\operatorname{Coh}^{\mathbb{C}^{*}}(\widetilde{\mathcal{N}})\right)
$$

and the Hochschild-Kostant-Rosenberg theorem stating that for a smooth algebraic variety X there is a vector space isomorphism

$$
H H^{\bullet}(X):=\operatorname{Ext}_{X \times X}^{\bullet}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \cong \bigoplus_{i+j=\bullet} H^{i}\left(X, \wedge^{j} T X\right)=: H T^{\bullet}(X)
$$

However, the natural map is usually not a ring isomorphism. The following theorem explains how to obtain a ring isomorphism :

Theorem 2 (Kontsevitch) Let t be the Todd class of X. Then, twisting with $t^{-1 / 2}$ gives a ring isomorphism $H H^{\bullet}(X) \cong H T^{\bullet}(X)$.

We verified that under a torus T action, the Todd class is T-invariant and the HKR isomorphism is T-equivariant. We obtain our main result:

Theorem 3 [3] The composition

is a ring isomorphism.
Corollary 1 Twisting by the Todd class of $\widetilde{\mathcal{N}}$ gives a ring isomorphism

$$
z_{0} \cong \bigoplus_{i+j+k=0} H^{i}\left(\tilde{\mathcal{N}}, \wedge^{j}(T \tilde{\mathcal{N}})\right)^{k}
$$

The theorem 3 essentially follows from these two propositions (here X is a smooth complex algebraic variety acted upon by a torus T) :

Proposition 1 [3] In the derived category $D^{b}(\operatorname{Coh}(X))$, the quasi-isomorphism

$$
\iota^{*} \mathcal{O}_{\Delta} \cong \bigoplus_{i \in X} \Omega_{X}^{i}[i]
$$

is T-equivariant

Here $\iota: \Delta \rightarrow X \times X$ is the inclusion map.
Proposition 2 [3] Let $t \in H \Omega^{\bullet}(X)$ be the Todd class of X. Then t is T-invariant.
In particular twisting the HKR isomorphism with $t^{-1 / 2}$ gives a T-equivariant multiplicative isomorphism $H^{\bullet}(X) \cong H T^{\bullet}(X)$. We hope that a similar statement holds where T is replaced by a reductive group G.

EXAMPLE

Let $\mathfrak{g}=\mathfrak{s l}_{3}$. The bigraded dimensions of z_{0} are as follows :

$j-i$	0	2	4	6
$i+j=0$	1			
$i+j=2$	2	1		
$i+j=4$	2	3	1	
$i+j=6$	1	2	2	1

Geometrically, the first colum is canonically isomorphic to the cohomology of the flag variety, and the big diagonal correspond to the subalgebra spanned by the Poisson bivector field $\tau \in H^{0}\left(\mathcal{N}, \wedge^{2} T \mathcal{N}\right)$. An easy geometric argument shows :

Proposition 3 [3] The subalgebra generated by $H^{*}(G / B)$ and τ is untwisted.
For $\mathfrak{s l}_{3}$, it describes the multiplicative structure of a codimension 1 subalgebra of z_{0}.

References

