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MOTIVATION
Many quantities in quantum information

such as the channel capacities, mutual infor-
mation of channels and coherent information
of channels are optimization problems over
entropic quantities.

How can we efficiently estimate
these quantities?

SUMMARY
We generalize alternating optimiza-

tion algorithms of Blahut-Arimoto type
to classical-quantum and fully quantum
problems. In particular, we give iterative
algorithms to compute

• the Holevo quantity: classical capacity
of classical-quantum channels,

• the coherent information for less noisy
channels: quantum capacity of a quan-
tum channel,

• the quantum mutual information: the
entanglement assisted quantum capac-
ity,

• the thermodynamic capacity of quan-
tum channels.

In all cases we provide convergence proofs
and analyze the time complexity.

KEY-IDEA:
Alternating optimization algorithms

Goal: Solve (potentially non-convex) opti-
mization problem:

max
u∈U

f(u) .

Strategy: We may cleverly recast the problem

into a double optimization problem

max
u∈U

f(u) = max
u1∈U1,u2∈U2

g(u1, u2) .

We can then define the iterative procedure
by choosing an initial u(1)

1 and the following
form for the t-th iteration step

u
(t)
2 = argmax

u2∈U2

g(u
(t)
1 , u2) ,

u
(t+1)
1 = argmax

u1∈U1

g(u1, u
(t)
2 ) .

Moreover, we set

G(t+1) = g
(
u

(t+1)
1 , u

(t)
2

)
.

Convergence: Under certain conditions,
one can then show

lim
t→∞

G(t) = max
u

f(u) .

EXAMPLE - QUANTUM MUTUAL INFORMATION
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Encoder Decoder

\textbf{Classical communication using a quantum channel:} Alice encodes a classical message $\mathcal{M}$ using the encoder 
$\mathcal{E}$ and sends the encoded quantum states over several identical copies of a channel $\mathcal{N}_{A\rightarrow B}$. Bob 
receives the outputs of the channel and gets an estimate of the message $\mathcal{M’}$ using the decoder $\mathcal{D}$. The green 
qubits represent shared entanglement between Alice and Bob that they may use as inputs to the encoder and decoder respectively to 
assist them with their communication task.
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The entanglement assisted classical capacity of a quantum channel E is given by the mutual
information I(E) of the channel, which is defined as

I(E) = max
ρ

S(ρ) + S(E(ρ))− S(Ec(ρ)) = max
ρ

Tr [ρF(ρ)] , with

F(ρ) = − log(ρ) + E†c log Ec(ρ)− E† log E(ρ) .

where S denotes the von Neumann entropy and where Ec denotes the complementary channel
of the channel E .

1. We define a two variable extension

J(ρ, σ) = Tr [ρF(σ)]− 2D(ρ‖|σ) and show that
I(E) = max

ρ
Tr [ρF(ρ)] = max

ρ,σ
J(ρ, σ) .

2. The individual maximizers can be given analytically by

ρ?(σ) =
exp(log σ + F(σ))

Tr [exp(log σ + F(σ))]
and σ?(ρ) = ρ .

3. Start with initial states ρ1 = σ1 = IA/|A|, where |A| denotes the dimension of the input
system of the channel E .

4. We prove that iteratively maximizing J(ρ, σ) over ρ and σ converges to I(E) within additive
error ε after 2 log |A|

ε iterations.

NUMERICS
We consider the amplitude damping channel given by

EADp (ρ) = A0ρA
†
0 +A1ρA

†
1 with A0 = |0〉〈0|+

√
1− p|1〉〈1|, A1 =

√
p|0〉〈1| for p ∈ [0, 1].
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Convergence of the Blahut-Arimoto algorithm to the mu-
tual information of the amplitude damping channel EAD0.3

in the standard and adaptive accelerated case. We eval-
uate in each iteration step t an a posteriori bound until it
ensures that the estimation error ε satisfies ε ≤ 10−6 (see
our paper on arXiv:1905.01286 for the details about the ac-
celerated case and the a posteriori bound).

RESULTS

Channels Quantity Time Complexity

X → Y Mutual information I(E) O
(
|X||Y | log |X|

ε

)
X → B Holevo quantity χ(E) O

(
(|B|3+|B|2|X|) log |X|

ε + |X||B|3
)

A→ B Thermodynamic capacity TΓ(E) O
(

(|A|3+|A|2|B|2+|B|3) log |A|
ε

)
A→ B Coherent information Icoh(E) O

(
(|A|3+|B|3+K3+|A|2(|B|2+K2) log |A|

ε

)
A→ B Quantum mutual information I(E) O

(
(|A|3+|B|3+K3+|A|2(|B|2+K2) log |A|

ε

)
Asymptotic worst-case time complexities for an additive ε-approximation. X and Y refer to

classical registers while A and B refer to quantum registers. For the coherent information of
quantum channels, we require the channel E to lie in the class of less noisy channels. The Kraus
rank of E is denoted by K ≤ |A||B|.


