MOTIVATION

Many quantities in quantum information
such as the channel capacities, mutual infor-
mation of channels and coherent information
of channels are optimization problems over
entropic quantities.

How can we efficiently estimate
these quantities?

SUMMARY

We generalize alternating optimiza-
tion algorithms of Blahut-Arimoto type
to classical-quantum and fully quantum
problems. In particular, we give iterative
algorithms to compute

e the Holevo quantity: classical capacity
of classical-quantum channels,

the coherent information for less noisy
channels: quantum capacity of a quan-
tum channel,

the quantum mutual information: the
entanglement assisted quantum capac-

ity,
the thermodynamic capacity of quan-

tum channels.

In all cases we provide convergence proofs
and analyze the time complexity.

KEY-IDEA:

Alternating optimization algorithms

Goal: Solve (potentially non-convex) opti-
mization problem:

max f(u) .

uelU
Strategy: We may cleverly recast the problem

into a double optimization problem

max f(u) =  max  g(ui,us).

uelU ui1 €U, u2€Us

We can then define the iterative procedure

by choosing an initial ugl) and the following
form for the ¢-th iteration step

u;t) — arg max g(ugt), Usz)
us U5

u§t+1) (t)) |

= arg max g(uy, Us
u1 €Uy

Moreover, we set

G — g (u§t+1),uét)) |

Convergence: Under certain conditions,
one can then show

lim G = max f(u).
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EXAMPLE - QUANTUM MUTUAL INFORMATION
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The entanglement assisted classical capacity of a quantum channel £ is given by the mutual
information /(&) of the channel, which is defined as

I(€) = max S(p) + S(E(p)) — S(Ec(p)) = maxTr [pF(p)| , with

p p

F(p) = —log(p) + Ellog Ec(p) — ETlog E(p) -

where S denotes the von Neumann entropy and where £¢ denotes the complementary channel
of the channel £.

1. We define a two variable extension

J(p,o) ="Tr|pF(c)] —2D(p|||c) and show that
I[(&) = max Tr [pF(p)] = max J(p, o).

Y

2. The individual maximizers can be given analytically by

_ exp(logo + F(o))
Tr [exp(log o + F(0))]

p*(o) and o”(p) =p.

3. Start with initial states p* = o' = I4/|A|, where |A| denotes the dimension of the input
system of the channel £.

4. We prove that iteratively maximizing J(p, o) over p and o converges to /(£) within additive
2log | A]

error e after iterations.

NUMERICS

We consider the amplitude damping channel given by

EXP (p) = AopAl + A1pA] with Ag = [0)(0] + /1 — p|1)(1], Ay = /p|0)(1] for p € [0,1].
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= Convergence of the Blahut-Arimoto algorithm to the mu-
% 1aml - tual information of the amplitude damping channel £;'%
: in the standard and adaptive accelerated case. We eval-
£ 1ovsie ' uate in each iteration step ¢ an a posteriori bound until it
ensures that the estimation error € satisfies ¢ < 107° (see
our paper on arXiv:1905.01286 for the details about the ac-
celerated case and the a posteriori bound).

-o- Adaptive accelerated Blahut-Arimoto
>¢Blahut-Arimoto
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RESULTS
Channels | Quantity Time Complexity
X —Y | Mutual information /(£) O |X||Y|81°g |X|)
X - B Holevo quantity x (&) O (|B|3+|B|2!X|)log|x| | \X|\B|3)
A— B Thermodynamic capacity 1T (&) O (|A|3+|A|2|B|z+|3|3) log |4
A— B Coherent information 7,1, (£) @, AP+ BIP+ K7+ | AP(| B+ K7) log | A
A— B Quantum mutual information 7(£) | O (|A|3+|B|3+K3+|él2(|B|2+K2)log|A|

Asymptotic worst-case time complexities for an additive e-approximation. X and Y refer to
classical registers while A and B refer to quantum registers. For the coherent information of

quantum channels, we require the channel £ to lie in the class of less noisy channels. The Kraus
rank of £ is denoted by K < |A||B)|.




