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1. BACKGROUND & MOTIVATION

e The Eigenstate Thermalization Hypothesis (ETH) provides a possible
way to explain thermalization in a quantum system.

e |t states that expectation value of a ‘typical” operator in an Eigenstate is
approximately same as its expectation value in a micro-canonical ensem-
ble, up to exponentially suppressed corrections in system size/entropy.

e The SYK model, a model of large N number of Majorana Fermions,
provides a playground to test ETH analytically. It has a universal low
energy limit described by ‘Schwarzian theory’.

e We analytically demonstrate ETH in the universal Schwarzian theory,
as well as in the SYK in various limits.

¢ Random Matrix Theory (RMT) is a canonical example of a system
obeying ETH.

e Wigner-Dyson (WD) spectral statistics is a notable attribute of RMT.
These spectral statistics are also underlying property of Quantum
Chaotic systems.

e Away from the ergodic regime, where WD statistics hold, the correc-
tions are non-universal.

e We study the behaviour of the operators in the ergodic regime of the
SYK model.

e Using the AdS/CFT correspondence we can relate the black hole formation in a theory of gravity to thermalisation in the dual field theory.
e Our ultimate goal is to develop a microscopic understanding of black hole formation by improving our understanding of thermalisation.

2. INTRODUCTION TO THE SYK MODEL

. SYK Hamiltonian [1]:
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. IR Effective action: In the IR limit, J|7| — oo, reparametrization is

an emergent symmetry of the action. This is spontaneously broken
by the ground state, and explicitly broken by introducing large but
finite .J. The low-energy etfective action is given by Schwarzian ac-
tion:
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. Computation of the correlation functions: In the large N limit, cor-
relations functions of fermions receive contributions from,
e Sum over ladders e Sum over f(7) modes

3. ETH IN THE CONFORMAL LIMIT

1. In the IR limit, the conformal four-point function can be computed
exactly by summing over the ladder diagrams.

2. Spectrum of operators in this limit is:
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with conformal weights, h,, = 2n 4+ 1 4 2¢,

3. Correlation functions of operators O,, were computed in [2] for arbi-
trary values of m,n, k and q.
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4. We study the three-point function, (0,,0;O,,) in the limit m,n >
k~ O(1), (where E = ™ d =n —m), [5],
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‘ This is the same behaviour for ETH as discussed in [3] I

4. ETH IN THE SCHWARZIAN LIMIT

1. The Schwarzian action, (2), can be obtained from a dimensional
reduction from 2-dimensional boundary Liouville theory, [4, 6].
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2. Depending on boundary conditions of the boundary Liouville
CFI, we obtain an operator/density matrix insertion in the
Schwarzian path integral. These correspond to pure coherent
states of the Schwarzian theory, [6].

3. Summary of thermal nature of different states:

state 2D picture class ETH A
|E(k)) 77 parabolic v | 2mTETH
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5. ERGODICITY IN THE SYK MODEL

1. Using the 1%' quantized Hamiltonian of the SYK model, the er-
godic limit of the SYK model can be found, [7]. In this limit, one
can analytically extract WD from the SYK Hamiltonian.

. Operator correlation functions have a characterstic behaviour in
this regime,

. In an ongoing work, we study the ergodic limit of the operator
correlation functions in the SYK model.
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