

RUELLE ZETA FUNCTION FROM FIELD THEORY: A perspective on Fried's conjecture Michele Schiavina ETH Zürich

Swiss National Science Foundation

ABSTRACT

We propose a field-theoretic interpretation of Ruelle zeta function, and show how it can be seen as the partition function for *BF* theory when an unusual gauge fixing condition on contact manifolds is imposed. This suggests an alternative rephrasing of a conjecture due to Fried on the equivalence between Ruelle zeta function and analytic torsion, in terms of homotopies of Lagrangian submanifolds. — *Based on* [3].

RUELLE ZETA AND FRIED'S CONJECTURE

Let $M = S_g^*\Sigma$, be the unit cotangent bundle of a compact, oriented, connected, *d*-dimensional Riemannian manifold without boundary (Σ, g) , and let $E \to M$ be a Hermitian vector bundle of rank r, equipped with a flat connection ∇ and a unitary representation ρ : $\pi_1(M) \to U(\mathbb{C}^r)$, such that the twisted de Rham complex is acyclic. Suppose that Σ has sectional curvature which is everywhere strictly negative, and denote by \mathcal{P} the set of primitive orbits of the geodesic flow ϕ_t .

FRIED'S CONJECTURE & GAUGE FIXING

To compute the partition function of BF theory in the BV formalism one needs a "gauge-fixing" Lagrangian submanifold of \mathcal{F}_{BF} . A classical result by Schwarz [5] can be summarised as follows

Theorem 4. Let $\mathbb{L}_q \subset \mathcal{F}_{BF}$ be the Lagrangian submanifold given by coexact

Definition 1 ([4]). The Ruelle zeta function twisted by the representation ρ is

$$\zeta_{\rho}(\lambda) := \prod_{\gamma \in \mathcal{P}} \det(I - \rho([\gamma])e^{-\lambda \ell(\gamma)}).$$
(1)

Conjecture 2 (Fried [2]). Let (M, E, ρ) be as above. Then:

$$|\zeta_{\rho}(0)|^{(-1)^{d-1}} = \tau_{\rho}(M) = \tau_{\rho}(\Sigma)^{2}.$$
(2)

where $\tau_{\rho}(M)$ is the Ray–Singer analytic torsion:

$$\tau_{\rho}(M) := \prod_{k=1}^{N} \det^{\flat}(\Delta_{k})^{\frac{k}{2}(-1)^{k+1}} = \prod_{k=0}^{N-1} \det^{\flat}(d_{k}^{*}d_{k})^{\frac{1}{2}(-1)^{k}}.$$
 (3)

with $\Delta_k := (d^*_{\nabla} + d_{\nabla})^2 : \Omega^k(M; E) \to \Omega^k(M; E)$ the (twisted) Laplacian on *E*-valued *k*-forms, and det^b a regularised determinant^a.

Denote by *X* the geodesic vector field on $S_g^*\Sigma$, and by $\Omega_0^{\bullet}(M)$ the space of differential forms ω such that $\iota_X \omega = 0$. We show that

forms. Then, the partition function of BF theory can be computed to be

 $Z(\mathbb{S}_{BF}, \mathbb{L}_g) = \tau_{\rho}(M).$ (8)

One heuristic interpretation of Schwarz's procedure is to make sense of partition functions for quadratic functionals as regularised determinants. In this case, writing $\mathbb{B} = \star \tau$, we look at the quadratic form $\mathbb{S}_{BF}|_{\mathbb{L}_g} = \sum_{k=1}^{N} (\tau_k, d_{\nabla}^* d_{\nabla} \mathbb{A}_k)|_{\text{coexact}}$, where (\cdot, \cdot) is the inner product on *k*-forms induced by *g*. In this spirit we prove the following:

Proposition 5 ([3]). Let X be the geodesic vector field on $M = S^*\Sigma$. Then,

 $\mathbb{L}_X := \{ (\mathbb{A}, \mathbb{B}) \in \mathcal{F}_{BF} \mid \iota_X \mathbb{B} = 0; \, \iota_X \mathbb{A} = 0 \}$

is Lagrangian in \mathcal{F}_{BF} . We denote this condition as contact gauge.

Theorem 6 ([3]). *The partition function of BF theory in the contact gauge is*

$$Z(\mathbb{S}_{BF}, \mathbb{L}_X) = |\zeta_{\rho}(0)|^{(-1)^{d-1}}.$$
(9)

Observe that, writing $\mathbb{B} = \iota_X \tau$, we get $\mathbb{S}|_{\mathbb{L}_X} = (\tau \mathcal{L}_X \mathbb{A})|_{\Omega_0^{\bullet}}$, and we are lead to the following:

Proposition 3. *The following decomposition holds*

$$\zeta_{\rho}(\lambda)^{(-1)^{d-1}} = \prod_{k=0}^{2n} \zeta_{\rho,k}(\lambda)^{(-1)^{k}}$$
(4)

for certain functions $\zeta_{\rho,k}(\lambda)$ such that $\det^{\flat}(\mathcal{L}_{X,k}|_{\Omega_0^k} - \lambda) = \zeta_{\rho,k}(\lambda)$. Hence

$$\zeta_{\rho}(0)^{(-1)^{d-1}} = \operatorname{sdet}^{\flat}(\mathcal{L}_X|_{\Omega_0^{\bullet}}).$$
(5)

We used here the "flat superdeterminant" sdet^b, of the operator \mathcal{L}_X . Observe that the analytic torsion can also be seen as a regularised super determinant, by means of $\tau_{\rho}(M) = [\operatorname{sdet}^{\flat}(\Delta|_{\operatorname{coexact}})]^{\frac{1}{2}}$

^{*a*}Here we will systematically consider a regularisation scheme based on "flat" or "mollified" traces [1]. For Δ it coincides with the standard zeta-regularisation.

BF THEORY AND BV FORMALISM

We consider now topological *BF* theory on $M = S_a^* \Sigma$, i.e. the data

Claim 7. *Proving gauge-fixing independence of the partition function of BF theory in the Batalin–Vilkovisky formalism would imply Conjecture 2.*

HOMOTOPIES AND THE BV THEOREM

The natural question now is: "how does one prove gauge fixing independence for the case at hand?"

The full BV framework controls the dependency on gauge fixing by assuming the existence of a second order operator on $C^{\infty}(\mathcal{F}_{BF})$, called BV Laplacian Δ_{BV} : ideally, whenever $\Delta_{BV} \exp(-\mathbb{S}_{BF}) = 0$, the partition function is constant on a family of gauge fixing Lagrangians \mathbb{L}_t .

For this idea to work in infinite dimensional cases like this one, we need to ensure that Δ_{BV} is appropriately defined and regularised (this is guaranteed in finite dimensions), and that there exists a homotopy of Lagrangian submanifolds \mathbb{L}_t connecting \mathbb{L}_g to \mathbb{L}_X .

This offers a new angle to tackle Fried's conjecture, replacing the microlocal analysis of Ruelle zeta function with the geometry of Lagrangian submanifolds in $\Omega^{\bullet}(M, E)$, and the problem of appropriately extending the BV theorem to *BF* theory.

On the other hand, such a bridge between field theory and modern analysis works both ways, effectively allowing us to prove gauge-fixing independence of BF theory using Fried's conjecture (true e.g. for surfaces), and to port powerful techniques in microlocal analysis to field theory, yielding a nontrivial new perspective on field theory.

 $\mathcal{F}_{BF} := \Omega^{-\bullet}(M, E)[1] \oplus \Omega^{-\bullet}(M, E)[N-2] \ni (\mathbb{A}, \mathbb{B}), \tag{6}$

together with a degree -1 symplectic form $\Omega_{BF} = \int_{M} [\delta \mathbb{B} \delta \mathbb{A}]^{\text{top}}$ and a degree 0 functional $\mathbb{S}_{BF} = \int_{M} [\mathbb{B} d_{\nabla} \mathbb{A}]^{\text{top}}$, such that $\{\mathbb{S}_{BF}, \mathbb{S}_{BF}\}_{\Omega_{BF}} = 0$.

This defines a Batalin–Vilkovisky (BV) theory.

The starting point of quantum considerations is the partition function, formally written as the integral (we avoid discussing phases)

$$Z(\mathbb{S}_{BF}) = \int \exp(i\mathbb{S}_{BF}) \tag{7}$$

The conceptual tool to make sense of the expression (7) is the notion of gauge fixing, aimed at removing the degeneracy of the Hessian of \mathbb{S}_{BF} .

REFERENCES

- [1] V. Baladi. Dynamical zeta functions and dynamical determinants for hyperbolic maps. Springer, 2018.
- [2] D. Fried. *Lefschetz formulas for flows*. Contemporary Mathematics, 58:19–69, 1987.
 [3] C. Hadfield, S. Kandel and M. Schiavina *Ruelle zeta function from field theory* arXiv:2002.03952 [math-ph]
- [4] D. Ruelle *Zeta-functions for expanding maps and Anosov flows*. Inventiones mathematicae, 34(3):231–242, 1976.
- [5] A. S. Schwarz *The partition function of a degenerate functional*. Communications in Mathematical Physics, 67(1):1–16, 1979