

QUANTIZATION OF POISSON HOPF ALGEBRAS

JOINT WORK WITH PAVOL ŠEVERA Ján Pulmann

UNIVERSITY OF GENEVA

Swiss National Science Foundation

COMMUTATIVE HOPF ALGEBRAS

Symmetric monodial category Com: (i.e. finite sets)

Let C be any symmetric monoidal category.

Theorem 1. The category of symmetric lax monoidal functors $N: \mathsf{Com} \to \mathcal{C}$ satisfying the nerve condition^{*}

HOPF ALGEBRAS WITH INVERTIBLE ANTIPODE

Braided monodial category BrCom:

modulo =

Let C be any braided monoidal category.

Theorem 2. The category of braided lax monoidal functors $N: \operatorname{BrCom} \to \mathcal{C}$ satisfying the nerve condition*

*nerve condition: $N(2)^{\otimes n} \xrightarrow{\text{lax functor}} N(2n) \xrightarrow{N(\swarrow \land \cdots \land \checkmark)} N(n+1)$

and
$$1_{\mathcal{C}} \xrightarrow{\cong} N(0) \xrightarrow{\cong} N(1)$$

Explanation. *N* is (functions on) the symmetric nerve of a group *G*, i.e. $H = \mathcal{O}(G) = N(2).$

The category of braided Hopf algebras with an invertible antipode in C.

The nerve functor N

QUANTIZATION

Infinitesimally braided monodial category iCom: (linear combinations of) Com + horizontal chords

Let C be any infinitesimally braided monoidal category.

Theorem 3. The category of infinitesimally braided lax monoidal functors $N: iCom \rightarrow C$ satisfying the nerve $condition^* \iff The \ category \ of \ Poisson$ Hopf algebras in C.

Poisson bracket

Choose Φ a rational Drinfeld associator.

LIE BIALGEBRAS

- ♦ $(\mathfrak{g}, [,], \delta)$ a Lie bialgebra
- $\diamond Ug$ is a commutative Hopf algebra in Vect^{op}
- ♦ δ extends to a Poisson bracket on $Ug \in \text{Vect}^{\text{op}}$

 \diamond Quantization: Hopf algebra in Vect_h

FUTURE DIRECTIONS

Quantization of *N* is the composition

$$\mathsf{BrCom} \xrightarrow{\Phi} \mathsf{iCom}_{\hbar}^{\Phi} \xrightarrow{N_{\hbar}} \mathcal{C}_{\hbar}^{\Phi}$$

It is universal: prop map Hopf $\rightarrow \mathsf{PoissHopf}_{\hbar}(\mathbb{Q})$

 \diamond Any higher group(oid) has a nerve Com $\rightarrow C$. What are the semiclassical and quantum versions?

(works for suitable Hopf algebroids)

 \diamond Chord diagrams P_n form a functor BrCom \rightarrow Vect by

 $n \mapsto P_{n-1}$.

REFERENCES

V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ [2] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras I.

[3] J. Pulmann, P. Ševera, Quantization of Poisson Hopf algebras. Arxiv:1906.10616