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BACKGROUND

A system that is in a state of local thermo-
dynamic equilibrium evolving to its global
equilibrium state is described by hydrody-
namics.  Equations of hydrodynamics are
formulated in a derivative expansion. The pos-
sible terms that may appear in this expansion
are restricted by the symmetries.

We formulate the complete first-order the-
ory of hydrodynamics invariant under time
translations, the Euclidean group of spatial
symmetries and containing a conserved charge
or particle number, i.e. total symmetry group
R xISO(d)xU(1) [1].  The thermodynamic
functions and transport coetficients that we find
are all functions of

e temperature T'(¢, z")

e chemical potential p(t, z")

e square of the velocity field v* (¢, 2*)
We hope to apply this framework in:

o distinguishing quasi-normal modes from
spatial collective modes [2]

o describing the electron fluid of graphene
at finite carrier density

e biophysics of self-propelled organisms,
e.g. bird flocking

ENTROPY CURRENT

One of the physical requirements of any theory
of hydrodynamics is positivity of entropy
production. This can lead to constraints on
transport coetficients.

We construct the most general expression
for the entropy current S# consistent with the
symmetries at hand, up to first derivative order,
and then ensure that 0,,5* > 0.

There are also linearly independent combina-
tions of transport coefficients that do not enter
0,5". They are responsible for etfects which
are nonuniform and non-dissipative. We find 9
such combinations.

Example: shear modes and shear viscos-
ity: consider shear-type velocity perturbation
around uniform flow,

V' = 0" - 0v'(t, k-T),
where k' is a spatial wavevector and k - dv =
v - 0v = 0. The constraints coming from the en-

tropy current analysis are

n >0,
i+ v2(7 + 796 — Y7 +713) > 0.

These also coincide with those arising out of the
requirement of dynamical stability.

METHOD

Special cases:

1. Lorentz spacetime
2. Lifshitz
3. Galilei / Bargmann Symmetries determine

T~

Kinematic structures
(covariant tensors)

Dynamics
(current conservation)

Redundancies: K 7

. Fleld redefinition

2. Equations of Motion

Constitutive Relations

We write down all possible kinematic structures
compatible with the symmetry R, xISO(d) xU(1)
at first order:

scalars

[UkﬁkT], v* 02, vkﬁk%, 0,1, 002, [8,5%],, O vk

vectors 0,1, 02, 0k, o', vFORvt, ' (scalars)

tensors 0i;, v (vectors)?), 0%- (scalars)

CONSTITUTIVE RELATIONS

Ideal fluid: the constitutive relations for an ideal
fluid in this symmetry class were written first by
|3, 4]. Examples of these relations:

7O = —¢ T(O)Oj = pv?,
7)) = —(€ + P)v", T(O)ij = P§" + pv'o?

First order: we impose conditions equivalent to
the so-called Landau frame conditions. We find
in total 29 transport coefficients [1]:
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Examples of constitutive relations at first order:

SPECIAL CASES

Imposing additional symmetries further con-
strains our transport coefficients. Examples:

Lorentz boosts: the transport coefficients are
completely determined by only 4 free functions
of two variables: the shear viscosity 7, bulk
viscosity ¢, conductivity o and x. Each of these

are arbitrary functions of T = ~AT. i = ~u,
where v = L . Further reduced to 3 due
\/ 1—v?/c?

to positivity of entropy production (y = 0).

Galilean boosts: starting with a relativistic
theory and sending ¢ — oo, the resulting theory
is invariant under massless Galilean boosts. We
find 3 transport coefficients remaining: 7, , o,
each a function of 7', .

Lifshitz scale invariance: invariance under the
inhomogeneous scale transformation
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for some arbitrary dynamical critical exponent
z. A transport coefficient v (T, v*, 1) with scal-
ing weight w; must be an arbitrary function of
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OUTLOOK

e It would be interesting to extend our anal-
ysis to include parity non-invariant ef-
fects.

e We would also like to understand better
the physical interpretation of new trans-
port coefficients that appear in the consti-
tutive relations.

e Another point of interest would be to see
practical applications of this framework
(e.g. graphene, biophysics)

REFERENCES

[1] I. Novak, J. Sonner and B. Withers, “Hydrodynamics
without boosts”, [arXiv:1911.02578 [hep-th]]

[2] I. Novak, J. Sonner and B. Withers, “Overcoming ob-
stacles in nonequilibrium holography”, Phys. Rev. D98
no. 8, (2018)

3] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma and
S. Vandoren,”“Perfect Fluids”, SciPost Phys. 5 (2018)
no.1, 003.

[4] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma and
S. Vandoren,”Hydrodynamic Modes of Homogeneous
and Isotropic Fluids”, SciPost Phys. 5 (2018) no.2, 014.




