SwissMAP
The Mathematics of Physics
National Centre of Competence in Research

Gian Michele Graf, $\frac{\text { Hansueli Jud, Clément Tauber }}{\text { Eth Zurich }}$

InTRODUCTION

We apply concepts used in the field of topological insulators to a classical wave phenomenon. In particular we study the correspondence between a topological invariant obtained from the bulk system defined without boundaries, with one where we introduce an edge, restricting to the half-space. Usually the two invariants agree, but we show that there is no correspondence for shallow water waves.

SHALLOW WATER EQUATIONS

Equations describing a thin layer of an incompressible fluid between a flat bottom and a free surface

$$
\begin{aligned}
& \frac{\partial \eta}{\partial t}=-\nabla \cdot \vec{v} \\
& \frac{\partial \vec{v}}{\partial t}=-g \nabla \eta-f \vec{v}^{\perp}-\nu \Delta \vec{v}^{\perp}
\end{aligned}
$$

Dynamical fields:

- height above the surface $\eta(x, y, t)$,
- two-component velocity field $\vec{v}(x, y, t)$,
$\left((\cdot)^{\perp}:\right.$ rotation by $\left.\pi / 2\right)$.
Parameters: Gravity g, angular velocity $f / 2$ and odd viscosity ν.
From $3 D$ Euler equations for incompressible and homogeneous fluid.
Assumption: Typical wavelength of fluid \gg height of fluid.
Regularization at small scales: $\nu \neq 0$ (allows to compactify momentum space).

MODEL AS SPIN 1 (BULK)

Analogous to a Schrödinger equation $\mathrm{i} \partial_{t} \psi=\mathcal{H} \psi$ for $\psi=(\eta, u, v)$ with

$$
\mathcal{H}=\left(\begin{array}{ccc}
0 & p_{x} & p_{y} \\
p_{x} & 0 & -\mathrm{i}\left(f-\nu \vec{p}^{2}\right) \\
p_{y} & \mathrm{i}\left(f-\nu \vec{p}^{2}\right) & 0
\end{array}\right)
$$

Translation invariance: \mathcal{H} reduces to fibers

$$
H=\vec{d} \cdot \vec{S}, \quad \vec{d}(\vec{k})=\left(k_{x}, k_{y}, f-\nu \vec{k}^{2}\right)
$$

with \vec{S} a spin 1 irrep..
Eigenvalues separated by two gaps of size f :

$$
\omega_{0}(\vec{k})=0, \quad \omega_{ \pm}(\vec{k})= \pm \sqrt{\vec{k}^{2}+\left(f-\nu \vec{k}^{2}\right)^{2}}
$$

Eigenprojections:
$P_{0}=1-(\vec{e} \cdot \vec{S})^{2}, \quad P_{ \pm}=\frac{1}{2}\left((\vec{e} \cdot \vec{S})^{2} \pm \vec{e} \cdot \vec{S}\right)$

- $\vec{e}(\vec{k}) \rightarrow(0,0,-\operatorname{sign} \nu)(|\vec{k}| \rightarrow \infty)$.

EDGE WAVES

Restrict to upper half-space $(x, y) \in \mathbb{R} \times$ \mathbb{R}_{+}. Self-adjoint boundary condition at $y=0$:
$v=0, \quad \partial_{x} u+a \partial_{y} v=0, \quad a \in \mathbb{R}$.

BULK-EDGE CORRESPONDENCE?

Bulk (Chern number)
Line bundles $P_{0}, P_{ \pm}$defined in terms of $\vec{e}(\vec{k})$ on S^{2} have Chern numbers
$C(P)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{R}^{2}} \mathrm{~d} k_{x} \mathrm{~d} k_{y} \operatorname{tr}\left(P\left[\partial_{k_{x}} P, \partial_{k_{y}} P\right]\right)$,

$$
C\left(P_{0}\right)=0, \quad C\left(P_{ \pm}\right)= \pm 2 .
$$

Edge (Hatsugai relation)

n : signed number of edge mode branches emerging $(+)$ or disappearing $(-)$ at the lower band limit as k_{x} increases.

$$
C\left(P_{+}\right)=n= \begin{cases}2 & (a,-\sqrt{2}) \\ 3 & (-\sqrt{2}<a<0) \\ 1 & (0<a<\sqrt{2}) \\ 2 & (a>\sqrt{2})\end{cases}
$$

\rightarrow RHS depends on a !

ViOLATION OF BULK-EDGE CORRESPONDENCE

Levinson's theorem: Scattering phase at energies just above thresholds \leftrightarrow bound states below it. - $S\left(k_{x}, \omega\right)$: Scattering amplitude for scattering from inside the bulk: \mid out $\rangle=S|i n\rangle$.
$-\mathcal{N}_{C}(f)=1 / 2 \pi \mathrm{i} \int_{C} f^{-1} \mathrm{~d} f$: Winding of $f: S^{1} \rightarrow S^{1}$ along a curve C.
Parametrized Hamiltonian: $\mathcal{N}_{C}(S) \leftrightarrow$ number of bound states merging with threshold along C. Theorem. Let $a \in \mathbb{R} \backslash\{0, \pm \sqrt{2}\}, C_{\epsilon}$ be parametrizing a loop on the sphere of momenta (see fig.), where the loop is split into parts away $\left(C_{\epsilon}^{0}\right)$ and near $\left(C_{\epsilon}^{\infty}\right)$ infinite momentum.

- Bulk-scattering correspondence (no violation). $\forall \epsilon>0$

$$
C\left(P_{+}\right)=\mathcal{N}_{C_{\epsilon}}(S) .
$$

- Levinson's theorem at finite momenta (no violation).

$$
n=\lim _{\epsilon \rightarrow 0} \mathcal{N}_{C_{\epsilon}^{0}}(S)
$$

- Levinson's theorem near infinite momentum (violation).

$$
\lim _{\epsilon \rightarrow 0} \mathcal{N}_{C_{\epsilon}}(S)= \begin{cases}0, & |a|>\sqrt{2}, \\ \operatorname{sign}(a), & 0<|a|<\sqrt{2}\end{cases}
$$

$a \gtrless \pm \sqrt{2}$: Edge mode merges with the bulk band at $k_{x}= \pm \infty$.

- $|a|<\sqrt{2}$: No edge modes in neighbourhood of bulk band as $\left|k_{x}\right| \rightarrow \infty$.

MORE ON SCATTERING THEORY

Structure of scattering amplitude:

- Bound states \leftrightarrow poles of $S\left(k_{x}, \omega\right)$ with $\operatorname{Im} k_{y}>0$.

$$
S\left(k_{x}, \omega\right)=-\frac{g\left(k_{x}, \tilde{k}_{y}\right)}{g\left(k_{x}, k_{y}\right)} .
$$

- \tilde{k}_{y} / k_{y} : incoming/outgoing momenta.
- g is analytic in k_{y}

FUTURE DIRECTIONS

- What about other boundary conditions?
- Other systems where methods are relevant?
- Geometry of complex bands "at infinity"?

SELECTED REFERENCES

[1] Graf, G. M., and Porta, M. (2013) Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3) 851-895
[2] Tauber, C., Delplace, P., and Venaille, A. (2019) A bulk-interface correspondence for equatorial waves. J. Fluid Mech. 868

