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1. Introduction

The E8 lattice and the Leech lattice are 
among the most famous math-
ematical objects. These exceptional 
structures emerge in dierent areas of
mathematics and physics, here are 
only a few to name: number theory, 
classication of finite groups, theory 
of Lie groups, automorphic forms, 
coding theory, extremal graph theory, 
string theory and statistical physics. 
What is the reason for their “celebri-
ty” status in nature? We cannot give 
a complete answer to this question. 
However, jointly with H. Cohn, A.
Kumar, S. D. Miller, and D. Radchenko, 
we have recently found that these lat-
tices have the following rare property 
– they are universally optimal [4].

2. E8 and Leech lattices

Let us introduce the two lattices in 
question a little closer. Both E8 and
Leech lattice belong to the “family” of 
even unimodular lattices. We recall
that a lattice in the Euclidean space is 
a discrete full rank abelian subgroups, 
unimodular lattices are the lattices 
containing on average 1 point per unit 
of volume, and the term even means 
that the length squared of each lattice 
vector in an even integer number. Lat-
tices with these both properties can 
exist only in dimensions dividible by 
8, they are rare in small dimensions 
and come in huge numbers in dimen-
sions bigger then 24. The E8-lattice is 
the unique even unimodular lattice in 
dimension 8, while the Leech lattice is 
one of 24 possible such lattices in di-

mension 24 and the only one among 
them having no vectors of the small-
est possible non-zero length \sqrt{2}. 
Both E8 and the Leech lattice enjoy 
the number of symmetries and ex-
tremal properties. For example, the 
shortest vectors of each of these 
lattices are the unique solutions to 
the sphere kissing problem in dimen-
sions 8 and 24. Also these lattices 
are solutions to the sphere packing 
problem in their respective dimen-
sions. We have found that the E8 and 

the Leech lattices are extremal for a 
much bigger family of optimization 
problems.

3. Universal optimality

Universal optimality is a property of a 
point conguration to be a simul-
taneous solution to a “universum” of 
optimization problems. This notion
was introduced by H. Cohn and A. 
Kumar [2] and applied to point config-
urations in homogeneous spaces 
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Figure 1. Petrie projection of the shortest vectors of E8-lattice into a 2-dimensional plane. 
Source: Wikipedia

such as the Euclidean space, hyper-
sphere, or hyperbolic space subject 
to the minimization of the energy of 
pairwise point interactions. We can 
think of points in the conguration as 
particles of some kind.
Energy minimization generalizes 
the sphere packing problem in R^d, 
in which we wish to maximize the 
minimal distance between neighbor-
ing particles while fixing the particle 
density. In the energy minimization 
problem we fix the particle density 
delta>0 and assume that the ener-
gy of interaction between a pair of 
particles depends only on distance 
r between them. Suppose that this 
dependence is given by a function 
p(r). Then the p-energy of a congura-
tion is the average interaction energy 
per particle. An energy minimization 
problem asks for a point conguration 
of density delta with the smallest 
possible value of p-energy. If exists, 
such a configuration is also called a 
ground state. 

We will concentrate on energy po-
tentials of a particular shape: we will 
consider repelling interactions such 
that the repulsion increases as parti-
cles get closer. Here is a more formal 
mathematical description. Recall 
that a function g: (0;Infinity) -> R is 
completely monotonic if it is infinitely 
differentiable and satisfies the ine-
qualities (–1)kg(k) >= 0 for all k >= 0. 
1. In other words, g is nonnegative, 
weakly decreasing, convex, and so 
on. For example, inverse power laws 
are completely monotonic, as are 
decreasing exponential functions. By 
Bernstein’s theorem the complete-
ly monotonic functions of squared 
distance are the cone spanned by the 
Gaussians and the constant function 
2. It follows that if a periodic config-
uration is a ground state for every 
Gaussian, then the same is true for 
every completely monotonic function 
of squared distance (by monotone 
convergence, because the potential is 
an increasing limit of weighted sums 
of finitely many Gaussians). 

Following Cohn and Kumar, we call 
such a conguration universally op-
timal: Let C be a point configuration 
in R^d with density rho, where rho>0. 
We say C is universally optimal if 
WWit minimizes p-energy whenever 
p: (0;infinity) -> R is a completely 
monotonic function of squared dis-
tance. 
Computations show that the univer-
sally optimal configurations are rare.
A putative list of universally optimal 
configurations on hyperspheres is 
given here [2]. Examples of univer-
sally optimal configurations are also 
known in  other metric spaces. 

4. Universal optimality in Euclidean 
spaces

Currently, only three universally opti-
mal configurations at the Euclidean
spaces are known: the lattice of inte-
ger numbers in R1 [2], the E8-lattice 
in R8, and the Leech lattice in R24 [4]. 
The hexagonal “honeycomb” lattice in 
dimension 2 is also conjectured to be 
universally optimal. A classical result 
is that the hexagonal lattice solves the 
sphere packing problem [7], however 
its optimality for potential energy 
minimization still remains open. On 
the other hand, the computations 
suggest that there is no universally 
optimal configuration in the 3-di-
mensional Euclidean space and the 
ground states depend on the energy 
profile [5], [6]. A similar situation has 
been detected in other small dimen-
sions. This leads to an assumption 
that the existence of a universally op-
timal configuration in Euclidean space 
is an exceptional coincidence and 
raises a question whether it occurs 
only in dimensions 1, 2, 8 and 24. 
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Figure 2. Sphere packing in dimension 3




