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An	important	open	problem	in	theoretical	physics	is	to	unify
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provides	a	theoretical	framework	to	address	this	question	

String	theory:	

has	generated	several	tools	and	ideas	leading	to	new	

results	and	applications	in	various	Eields

Today	we	will	see	a	concrete	example
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Exact	analytic	solutions	for	spectral	theory	of	QM	operators	are	rare

need	non-perturbative	tools

Fruitful	guideline:	think	of	QM	geometrically	[Balian-Parisi-Voros]

make	contact	with	supersymmetric	gauge	theory	and	topological	

string

new	non-perturbative	tools

[Nekrasov-Shatashvili,	Gaiotto-	Moore-Neitzke,	AG-Hatsuda-Marino,	Huang,	…	]
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Balian,	Parisi	and	Voros	developed	in	the	‘70s	a	geometrical	approach	to	

quantum	mechanics

Seiberg	and	Witten	developed	in	the	‘90s	a	geometrical	approach	to	

supersymmetric	gauge	theories

1

2

geometry	is	the	common	background	

connecting	these	two	subjects

Why	do	we	expect	supersymmetric	gauge	theory	to	play	any	role	in	spectral	

theory	of	QM	operators?	
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Black	 hole	 quasinormal	 modes	 	 (QNMs)	 resonances	 (or	

dissipative	modes)	encoding	the	response	of	the	BH	to	a	perturbation.

{ωn}n≥0 ∼

Introduction	&	Motivation

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1σ. The source lies at a luminosity distance of 410þ160

−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03
−0.04 .

In the source frame, the initial black hole masses are 36þ5
−4M⊙ and 29þ4

−4M⊙, and the final black hole mass is
62þ4

−4M⊙, with 3.0þ0.5
−0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

I. INTRODUCTION

In 1916, the year after the final formulation of the field
equations of general relativity, Albert Einstein predicted
the existence of gravitational waves. He found that
the linearized weak-field equations had wave solutions:
transverse waves of spatial strain that travel at the speed of
light, generated by time variations of the mass quadrupole
moment of the source [1,2]. Einstein understood that
gravitational-wave amplitudes would be remarkably
small; moreover, until the Chapel Hill conference in
1957 there was significant debate about the physical
reality of gravitational waves [3].
Also in 1916, Schwarzschild published a solution for the

field equations [4] that was later understood to describe a
black hole [5,6], and in 1963 Kerr generalized the solution
to rotating black holes [7]. Starting in the 1970s theoretical
work led to the understanding of black hole quasinormal
modes [8–10], and in the 1990s higher-order post-
Newtonian calculations [11] preceded extensive analytical
studies of relativistic two-body dynamics [12,13]. These
advances, together with numerical relativity breakthroughs
in the past decade [14–16], have enabled modeling of
binary black hole mergers and accurate predictions of
their gravitational waveforms. While numerous black hole
candidates have now been identified through electromag-
netic observations [17–19], black hole mergers have not
previously been observed.

The discovery of the binary pulsar systemPSR B1913þ16
by Hulse and Taylor [20] and subsequent observations of
its energy loss by Taylor and Weisberg [21] demonstrated
the existence of gravitational waves. This discovery,
along with emerging astrophysical understanding [22],
led to the recognition that direct observations of the
amplitude and phase of gravitational waves would enable
studies of additional relativistic systems and provide new
tests of general relativity, especially in the dynamic
strong-field regime.
Experiments to detect gravitational waves began with

Weber and his resonant mass detectors in the 1960s [23],
followed by an international network of cryogenic reso-
nant detectors [24]. Interferometric detectors were first
suggested in the early 1960s [25] and the 1970s [26]. A
study of the noise and performance of such detectors [27],
and further concepts to improve them [28], led to
proposals for long-baseline broadband laser interferome-
ters with the potential for significantly increased sensi-
tivity [29–32]. By the early 2000s, a set of initial detectors
was completed, including TAMA 300 in Japan, GEO 600
in Germany, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) in the United States, and Virgo in
Italy. Combinations of these detectors made joint obser-
vations from 2002 through 2011, setting upper limits on a
variety of gravitational-wave sources while evolving into
a global network. In 2015, Advanced LIGO became the
first of a significantly more sensitive network of advanced
detectors to begin observations [33–36].
A century after the fundamental predictions of Einstein

and Schwarzschild, we report the first direct detection of
gravitational waves and the first direct observation of a
binary black hole system merging to form a single black
hole. Our observations provide unique access to the

*Full author list given at the end of the article.
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QNMs	 can	 be	 used	 to	 determine	 mass,	 angular	 momentum	 (and	

electric	charge)	of	the	Einal	black	hole.

Indeed,	according	to	general	relativity	“black	holes	have	no-hair”	(only	

3	hairs):

mass

angular	momentum

electric	charge
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omette
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QNMs	 depend	 only	 on	 mass,	 angular	 momentum	 (and	

electric	charge)	of	the	Einal	black	hole

are	used	to	determine	mass,	angular	momentum	(and	

electric	charge)	of	the	Einal	black	hole

Introduction	&	Motivation



Plan:

Review	the	main	ideas	behind	the	geometric/gauge	theoretic	

approach	to	spectral	theory	and	show	a	concrete	application	to	the	

study	of	black	hole	quasinormal	modes.	



.	.	.	spectral	theory	of	QM	operators.	.	.



(−ℏ2∂2
x + x2 − E)ϕ(x) = 0

H( ̂x, ̂p) = ̂p2 + ̂x2, [ ̂x, ̂p] = iℏ

Schrödinger	equation:

Hamiltonian:	

positive	discrete	spectrum	

	on	{En}n≥0 L2(ℝ)
E0

E1

E2

⋮

A	toy	model:	the	harmonic	oscillator



quantization	of	semiclassical	phase	space	volume	

Vol(E) = 2πℏ (n + 1
2 ), n = 0,1,2,…

Vol(E) = {x2 + p2 ≤ E} = πE

En = 2ℏ (n + 1
2 )

p

x

The	eigenvalues	can	be	obtained	by	using	Bohr-Sommerfeld	quantization	condition:



We	need	to	include	 	corrections	both	at	the	perturbative	and		

non-perturbative	level:	this	is	highly	non	trivial.

ℏ

For	more	generic	spectral	problems,	Bohr-Sommerfeld	is	only	a	

semiclassical	approximation.!



A	simple	example:	modiEied	Mathieu.

Hamiltonian: H( ̂x, ̂p) = ̂p2 + 2Λ2 cosh ̂x, [ ̂x, ̂p] = iℏ

E0

E1

E2

⋮
discrete	spectrum	{En}n≥0



H( ̂p, ̂x) = ̂p2 + 2Λ2 cosh ̂x p2 + 2Λ2 cosh x = E

		 				where				Π(0)
A,B(E) = ∮A,B

p(x, E)dx p(x, E) = E − 2Λ2 cosh x

Classical	periods:	

operator curve

Thinking	geometrically:



Π(0)
B (E) = ∫

x+

x−

p(x, E)dx = 8 E + 2Λ2 K ( E − 2Λ2

E + 2Λ2 ) − E ( E − 2Λ2

E + 2Λ2 )

x± = ± cosh−1 ( E
2Λ2 )

Π(0)
A (E) = 1

2πi ∫
iπ

−iπ
p(x, E)dx = = 8 E + 2Λ2E ( 4Λ2

2Λ2 + E )

E

x− x+

	complex	trajectory∼

V(x) = 2Λ2 cosh x
	classical	trajectory	∼



The	quantization	condition	for	this	operator	takes	the	following	form:	

∮B
p(x, E)dx + ,(ℏ2) + ,(e−1/ℏ) = 2πℏ (n + 1

2 )
Π(0)

B (E)

Perturbative	corrections:	

(all-order)	WKB	approach

Terminology:	we	refer	to	l.h.s.	as	quantum	B	period:	 	ΠB(E, ℏ)

[Dunham]



Interesting	result:

quantum	periods	

partition	function	of	

suitable	four	dimensional		

Seiberg-Witten	theory	

in	 	backgroundΩ

[Nekrasov-Shatashvili,		Mironov-Morozov,	…	]

Bethe/gauge	correspondence



	.	.	.	Seiberg-Witten	theory	and	the	 	background	.	.	.	Ω



For	modiEied	Mathieu	the	relevant	gauge	theory	is	a	supersymmetric	

version	of		four	dimensional	Yang-Mills	with	gauge	group	G=	SU(2)

(4dim	 ,	 	pure	Seiberg-Witten	theory	in	the	 	background). = 2 SU(2) Ω

	(or	 )		 	parametrise	moduli	space	of	vacua	E a ∼

	 instanton	counting	parameter	( 	gauge	coupling)Λ ∼ ∼

Relevant	parameters:

	 		 	background	parametersϵ1, ϵ2 ∼ Ω



The	exact	partition	function	 	was	computed	by	NekrasovZ(a, Λ, ϵ1, ϵ2)

Two	important	results:

a

The	Nekrasov-Shatashvili	phase	is	deEined	by	

ϵ2 = 0

Notation:			 		is	the	free	energyF ∼ log Z



	In	our	example,	the	explicit	expression	of	the	free	energy	reads:	

Nekrasov	free	energy	is	exact	in	 ’s		and	is	a	convergent	series	in	 .ϵ Λ

[Its	et	al,	Bershtein	et	al,	Felder	et	al,	]

F(a, Λ, ϵ1) = ∑
n≥1

cn(a, ϵ1)Λn

c1(a, ϵ1) = − 2
a2 + ϵ2

1

c2(a, ϵ1) = 7ϵ2
1 − 5a2

(a2 + ϵ2
1)3(a2 + 4ϵ2

1)

⋯



The	physics	of	this	type	of	gauge	theories	can	be	encoded	geometrically	in	

the	Seiberg-Witten	curve.		In	our	example	the	relevant	geometry	is

p2 + 2Λ2 cosh x = E

• the	classical	periods	 	are	related	to	the	charges	of	(BPS)	

particles	in	the	gauge	theory.

Π(0)
A,B(E)

b

For	example:

• the	genus	of	the	curve	gives	the	rank	of	the	gauge	group



	.	.	.	Back	to	modiEied	Mathieu	.	.	.	



H( ̂x, ̂p) = ̂p2 + 2Λ2 cosh ̂x p2 + 2Λ2 cosh x = E

ModiEied	Mathieu	is	interpreted	as	the	quantum	SW	curve	of	 	SU(2)	SYM. = 2

ModiEied	Mathieu:

This	is	the	Seiberg-Witten	

curve	of	4	dim	 	SU(2)	

SYM

. = 2

ℏ = ϵ1Moreover:



matching	of	classical	curve

It	is	possible	to	map	open	

questions	in	spectral	theory	

to	solvable	problems	in	4d	

Seiberg-Witten	theory.Nekrasov-Shatashvili

Nekrasov-Rosly-Shatashvili

Gaiotto-Moore-Neitzke

AG-Gu-Marino

Jeong

Codesido-Marino

Huang

Kashani-Poor-Troost

Mironov-Morozov

Dunne-BasarAG-Marino

Ito-Shu

Beccaria

Zenkevich

Gaiotto

Yan-Neitke

He-Miao

Hollands-Neitzke

.	.	.	.	.	
.	.	.	.	.	

Gorsky-Milekhin-Sopenko

Fioravanti-Poghossian

Many	others

Gorsky,	Krichever,	Marshakov,	Mironov	Morozov,

Kozlowski-Teschner



ΠB(E, Λ, ℏ) = a
2 log ( ℏ2

Λ2 ) − πℏ
4 − iℏ

2 (log Γ (1 + ia
ℏ ) − log Γ (1 − ia

ℏ )) + ∂aF(a, Λ, ℏ)

E = a2 + Λ∂ΛF(a, Λ, ℏ)

F(a, Λ, ℏ)

Exact	quantum	periods

(Matone	relation)

Nekrasov-Shatashvili		

free	energy

ΠB(E, Λ, ℏ)



Therefore	the	exact	quantization	condition	reads

ΠB(E, ℏ) = 2πℏ (n + 1
2 )

Computed	exactly	by	using	Nekrasov-Shatashvili	partition	function.

Notation: ΠB(E, ℏ) = ∂FNS(E, ℏ)

n = 0,1,2,…

(proven	by	Kozlowski	and	Teschner)



The	 geometric/gauge	 theoretic	 approach	 provides	 us	 with	 a	 new	

analytic	window	on	spectral	theory.		

Here	we	focused	on	quantization	condition,	however	this	approach	can	

also	 be	 used	 to	 compute	 eigenfunctions,	 Fredholm	 determinants,	 and	

others	objects	in	spectral	theory.

Partial	summary	



In	recent	years	many	operators	of	interest	in	mathematical	physics	have	

been	successfully	analysed	in	a	similar	way.

Next:	apply	these	ideas	to	black	hole	perturbation	theory	and	more	precisely	

to	black	hole	quasinormal	modes

[based	on	work	in	collaboration	with	G.	Aminov	and	Y.	Hatsuda]



.	.	.	back	to	BH	quasinormal	modes	.	.	.	



The	framework	to	compute	BH	quasinormal	modes	is	called	BH	perturbation		

theory.

Rμν − 1
2 gμνR = 0

	Ricci	tensorRμν

	scalar	curvatureR

	metricgμνwhere

Schwarzschild	black	hole:	static	and	spherically	symmetric	solution	to	the	

Einstein	equation	in	the	vacuum

Example:	



Schwarzschild	metric:

ds2 = gμνdxμdxν = − (1 − 2M
r ) dt2 + (1 − 2M

r )
−1

dr2 + r2 (dθ2 + sin2 θdϕ2)

	:	Minkowski	Elat	spacetimer → ∞

:	BH	horizonr = 2M

:	BH	singularityr = 0

IN

affitto

singularity



What	happen	if	we	add	a	“small”	perturbation	to	this	solution?	

gμν = gS
μν + δgμν

perturbation

It	was	shown	by	Regge	and	Wheeler	that	(linear)	perturbations	of	the		

Schwarzschild	metric	can	be	encoded	in	a	simple	second	order	differential		

equation.

Schwarzschild	metric



To	derive	such	equation,	it	is	convenient	to	use	the	symmetries	of	the	

background	metric	and	decompose	the	perturbation	as:		

δg = ∑
ℓ

0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

h0(r) h1(r) 0 0

e−iωt sin θ
∂
∂θ

Yℓ,0(θ)

where																																							are	the	spherical	harmonicsYℓ,0(θ) ∼ Pℓ(cos θ)

Legendre	polynomials



Then,	substituting	this	into	Einstein	equations	we	obtain	the	Regge-

Wheeler	equation:	

[f(r) d
dr

f(r) d
dr

+ ω2 − V(r)] Φ(r) = 0, f(r) = 1 − 2M
r

V(r) = f(r)( ℓ(ℓ + 1)
r2 − 6M

r3 )
where

h0(r) ∼ f(r) d
dr Φ(r)h1(r) ∼ rf −1(r)Φ(r)( )



The	Regge-Wheeler	equation	is	supplied	by	appropriate	boundary	conditions

V(r*)

r*

tortoise	coordinate:	 																					horizon	@	r* = 2 + 2M log ( r
2M

− 1) r* → − ∞

Φ(r*) ∼ eiωr*

@r* → ∞

Φ(r*) ∼ e−iωr*

@r* → − ∞



These	BC	are	satisEied	only	for	a	discrete	(complex)	set	of	the	frequencies		

	called	quasinormal	modes.	{ωn}n≥0

It	is	possible	to	compute	BH	quasinormal	modes	numerically.		

Q:	Is	it	possible	to	have	a	more	analytic	approach	to	QNMs?

Example:	 	and	2M=1ℓ = 2

ω0 = 0.7473… − i ⋅ 0.1779…
ω1 = 0.6934… − i ⋅ 0.5478…
ω2 = 0.6021… − i ⋅ 0.9565…

⋮

[see	Berti-Cardoso-Starinets	(review)]	

https://pages.jh.edu/~eberti2/ringdown/  



Regge-Wheeler		

equation

Suitable	quantum	

Seiberg-Witten	

geometry

By	following	the	geometric/	gauge	theoretic	approach	to	

spectral	theory	we	can	write	an	exact	quantization	

condition	for	BH	quasinormal	modes

some	algebra		

+ previous	works	

by	Zenkevich,	

Ito	et	al,		Fiziev	

et	al,

We	found	that:



SYM	with	Nf = 3 Schwarzwild	BH

Λ
E
m1

m2

m3

gauge	coupling

parametrisation	of	vev

Elavour	masses	

and then we obtain the normal form (see for instance [41–43]):

�
00
(z) + eQ(z)�(z) = 0, (3.6)

where
eQ(z) =

z
2

(z � 1)2
[(2M!)

2
� (2M)

2
V (2Mz)] +

4z � 3

4z2(z � 1)2

=
1

z2(z � 1)2

4X

i=0

eAiz
i
,

(3.7)

with
eA0 = �s

2
+

1

4
,

eA1 = `(`+ 1) + s
2
,

eA2 = �`(`+ 1),

eA3 = 0,

eA4 = (2M!)
2
.

(3.8)

We now compare the equations in the form (3.6)-(3.8) with the SU(2) quantum Seiberg-
Witten curve for Nf = 3 as given in (2.27)-(2.29). Setting ~ = 1, the parameter correspondence
is quite simple:

⇤3 = �16iM!, E = �`(`+ 1)+8M
2
!
2
�

1

4
,

m1 = s�2iM!, m2 = �s�2iM!, m3 = �2iM!.

(3.9)

Therefore, if we think of the Regge-Wheeler equation from the point of view of the supersymmetric
gauge theories it is natural to ask what is the meaning of the quantizaton (2.19) in the context
of black holes. We find evidence that, by using the dictionary (3.9), the quantization condition
(2.19) for the B-period indeed computes the QNM frequencies. Our conclusion is therefore given
by

⇧
(3)
B

✓
�`(`+ 1)+8M

2
!
2
�

1

4
,m,�16M i!, 1

◆
= 2⇡

✓
n+

1

2

◆
, n = 0, 1, . . . ,

m = {s�2iM!,�s�2iM!,�2iM!}.

(3.10)

For a given set of quantum numbers {`, s, n}, this equation admits a discrete family of complex
solutions !n(`, s).

Since the actual computation is intricate, we briefly illustrate it. Using (2.18), the left hand
side in the first equation of (3.10) is expressed by the Nekrasov-Shatashvili free energy. This free
energy is computed by Nekrasov’s combinatorial formula (A.7) systematically. For Nf = 3, we
have (A.15) with (A.13). The problem is that the NS free energy includes the parameter a that
is not directly related to the black hole parameters. To avoid it, we use the Matone equation
(A.16). This exact relation allows us to express a in terms of E.6 The Matone relation is just the
inverse relation of (2.17). Therefore we can finally eliminate a from the NS free energy, and thus
we can solve the quantization condition (3.10) with respect to M!.
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This inversion is done analytically to keep track of the powers of the instanton counting parameter.
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and then we obtain the normal form (see for instance [41–43]):
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We now compare the equations in the form (3.6)-(3.8) with the SU(2) quantum Seiberg-
Witten curve for Nf = 3 as given in (2.27)-(2.29). Setting ~ = 1, the parameter correspondence
is quite simple:
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The	precise	dictionary	is:

−2 − 2iMω

2 − 2iMω

The	relevant	gauge	theory	is	a	4	dimensional	supersymmetric	version	of		SU(2)	Yang-

Mills	with	matter		(the		 		Seiberg-Witten	theory)Nf = 3

ℏ 1



ℏ = 1

This	agrees	with	numerical	calculations	of	ωn

∂FNS(E, ℏ, Λ, m1, m2, m3) = 2πℏ (n + 1
2 )

Λ = − 16iMω E = − ℓ(ℓ + 1) + 8M2ω2 − 1
4

m1 = 2 − 2iMω, m2 = − 2 − 2iMω, m3 = − 2iMω

Nekrasov-Shatashvili	free	energy	for	the	 		SW	theory	evaluated	@Nf = 3



The	gauge	theoretic	approach	to	spectral	theory	can	be	

used	 to	 obtain	 new	 analytic	 results	 for	 QNMs	 of	

Schwarzschild	black	hole

This	approach	can	also	be	generalised	to	other	BHs



So	far	we	studied	Schwarzschild	and	Kerr	solutions	which	are

Asymptotically	Elat	at	inEinity	

Four	dimensional

We	found	that	their	quasinormal	modes	frequencies	are	encoded	in	four	

dimensional	SU(2)	SW	theory	with	 .Nf = 3

2.

1.

What	happens	if	we	modify	the	conditions	1	and	2	?	does	the	connection	with	SW	

theory	still	holds?

Some	preliminary	results	indicated	that	this	is	the	case.	For	instance	

asymptotically	(A)dS	BH	in	4d	are	mapped	to	4d	SU(2)	with	 	.	Nf = 4



The	 geometric/gauge	 theoretic	 approach	 to	 spectral	 theory	

provides	us	with	interesting	non-perturbative	tools	which	can	

be	used	to	obtain	new	exact	analytic	results.

This	approach	has	found	a	wide	range	of	applications,	going	form	

integrable	 systems	 to	 black	hole	 physics,	which	we	 just	 start	 to	

explore.

Conclusion



Thank	you!





Kerr	black	hole:	stationary	and	axially	symmetric	

solutions	to	the	Einstein	equation	in	the	vacuum.	

They	are	characterised	by	a	mass	

	and	angular	momentum	 .M α

For	the	black	hole	horizon	to	exist:

If	 	the	BH	is	called	extremal.	α = M

α ≤ M

massangular	momentum



The	example	of	Kerr	BH	is	technically	more	involved	but	the	approach	based	on	

SW	theory	works	and	it	is	even	more	interesting:

we	obtained	an	analytic	formula	for	the	eigenvalues	of	

spheroidal	harmonics.

we	could	easily	analyse	the	extremal	limit.	This	limit	

corresponds	to	the	decoupling	limit	in	SW	theory	where:			

Nf = 3 → Nf = 2



Nb 2M!0(2, 2) 2M!1(2, 2) 2M!2(2, 2)

3 0.7480� 0.1985i 0.6947713� 0.550331i 0.600036� 0.953084i
7 0.7446� 0.1890i 0.6933273� 0.548018i 0.602154� 0.956237i
12 0.7472� 0.1777i 0.6934216� 0.547829i 0.602101� 0.956556i
Num 0.7473 � 0.1779i 0.6934220 � 0.547830i 0.602107 � 0.956554i

Table 3. Solutions !n to the quantization condition (3.10) for ` = s = 2 and n = 0, 1, 2. We denote
by Nb the order at which we truncate the instanton counting series F

(3)
inst in (A.13). We apply Padé

approximants to improve the convergence of the instanton counting series. The matching digits are shown
by boldface. The numerical values are obtained from [36].

4 Quasinormal modes of Kerr black holes

Kerr black holes are stationary and axially symmetric solutions to the Einstein equation in the
vacuum. The four-dimensional asymptotically flat solution in the Boyer-Lindquist coordinates is:

ds
2
=� dt

2
+ dr

2
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2
✓drd�+ (r

2
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2
✓)d✓

2
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) sin

2
✓d�
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+
2Mr

r2 + ↵2 cos2 ✓

�
dt+ dr + ↵ sin

2
✓d�

�2
,

(4.1)

where M is the mass and ↵ is the angular momentum. Perturbations of rotating black holes
are described by the Teukolsky equation [46, 47]. The Tuekolsky equation is a separable partial
differential equation in the Boyer-Lindquist coordinates.

After separation of variables, its angular part reads (see for instance [10, eq. (25)])

d

dx
(1� x

2
)
d

dx
+ (cx)

2
� 2csx+ sA`m + s�

(m+ sx)
2

1� x2

�
sSlm(x) = 0, (4.2)

where x = cos ✓ and s is the (minus of) spin of a perturbing field. Moreover

` = 0, 1, 2 · · · , with |m|  `, (4.3)

where m 2 Z for integer spins and m 2
1
2+Z for half integer spins. In the black hole perturbation,

the parameter c is related to the angular momentum ↵ and the frequency ! by

c = ↵!.

The eigenfunction sSlm(x) is called the spin-weighted spheroidal harmonics in the literature. Its
eigenvalue sA`m is determined by the regularity condition of sSlm(x) at x = ±1. For general s,
l, m and c, no closed form of sA`m is known so far. However, for c = 0 the spheroidal harmonics
sSlm(x) reduces to the spin-weighted spherical harmonics sYlm and one has

sA`m(c = 0) = `(`+ 1)� s(s+ 1). (4.4)

The radial Teukolsky equation is more complicated and reads (see for instance [10, eq. (25)]),

�(r)R
00
(r) + (s+ 1)�

0
(r)R

0
(r) + VT (r)R(r) = 0, (4.5)

where �(r) = r
2
� 2Mr + ↵

2. The potential is

VT (r) =
K(r)

2
� 2is(r �M)K(r)

�(r)
� sA`m + 4is!r + 2↵m! � ↵

2
!
2
, (4.6)
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Dictionary	for	the	(radial)	Teukolsky	equation:

Kerr	BH

Λ

E

m1

m2

m3

gauge	coupling:

vev	of	scalar:

SYM	with	Nf = 3

−16iω M2 − α2

−2Aℓm(ωα) − 2(2 + 1) + (8M2 − α2)ω2 − 1
4

2 − 2iMω

−2 − 2iMω

i(−2M2ω − αm)
M2 − α2

−2Aℓm(ωα) :	eigenvalues	of	spheroidal	

harmonics.

Elavour	masses:	

Λ∂ΛFNS(a, mi, Λ)
a=ℓ+1/2
Λ = αω
m1 = m
m2 = m3 = 2

No	closed	form	expression	was		

known.


