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Introduction & Motivation

An important open problem in theoretical physics is to unify

General Relativity Quantum Mechanics




Introduction & Motivation

String theory:

-3 provides a theoretical framework to address this question

~3» has generated several tools and ideas leading to new
results and applications in various fields

Z—% Today we will see a concrete example



Introduction & Motivation

Today’s subjects




Introduction & Motivation

Exact analytic solutions for spectral theory of QM operators are rare

-3 need non-perturbative tools

Fruitful guideline: think of QM geometrically [Balian-Parisi-Voros]

-=» make contact with

-3 new non-perturbative tools

[Nekrasov-Shatashvili, Gaiotto- Moore-Neitzke, AG-Hatsuda-Marino, Huang, ... ]



Introduction & Motivation

Why do we expect supersymmetric gauge theory to play any role in spectral
theory of QM operators?

@ Balian, Parisi and Voros developed in the ‘70s a geometrical approach to
quantum mechanics

developed in the ‘90s a geometrical approach to
supersymmetric gauge theories

-3 geometry is the common background
connecting these two subjects



Introduction & Motivation

Today’s subjects

. modes "

quasinormal



Introduction & Motivation

Black hole quasinormal modes {®,},>, (QNMs) ~ resonances (or

dissipative modes) encoding the response of the BH to a perturbation.
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Introduction & Motivation

QNMs can be used to determine mass, angular momentum (and
electric charge) of the final black hole.

Indeed, according to general relativity “black holes have no-hair” (only
3 hairs):

angular momentum

mass
electric charge



Introduction & Motivation

QNMs depend only on mass, angular momentum (and
electric charge) of the final black hole

—4 are used to determine mass, angular momentum (and
electric charge) of the final black hole

~ Testing the No-Hair Theorem with GW150914

Maximiliano Isi, Matthew Giesler, Will M. Farr, Mark A. Scheel, and Saul A. Teukolsky
Phys. Rev. Lett. 123, 111102 — Published 12 September 2019




Plan:

Review the main ideas behind the geometric/gauge theoretic
approach to spectral theory and show a concrete application to the
study of black hole quasinormal modes.



... spectral theory of QM operators. ..



A toy model: the harmonic oscillator

Hamiltonian: H(, p) = p* + &2, (%, p] = ih
Schroédinger equation: (=7%0% + x> — E)p(x) =0

. 7,

positive discrete spectrum \
{E,} 0 on L*(R) / E




The eigenvalues can be obtained by using Bohr-Sommerfeld quantization condition:

- quantization of semiclassical phase space volume

1
P Vol(E) = 2nh <n+5>, n=0,1,2,...

VOl(E) = {x*+p* < E} =zE

1N

1



For more generic spectral problems, Bohr-Sommerfeld is only a

semiclassical approximation.

We need to include 7 corrections both at the perturbative and

non-perturbative level: this is highly non trivial.



A simple example: modified Mathieu.

Hamiltonian: H(, p) = p*> + 2A? cosh %,

—3 discrete spectrum { £},




Thinking geometrically:

operator curve
H(p,X) = p*> +2A*cosh & > p?>+2A’coshx =E
(=D
(=

N\or

Classical periods:

NY(E) = ﬂg p(x,E)dx where p(x,E)=+VE —2A2coshx
’ AB



Oy = | _ 2
o MYE)= [ p(x, E)dx = 8VE +2A

~ classical trajectory

1
o MNOE)=—
A() 27l

' ¥/

~ complex trajectory

E — 2A?
—E
E + 2A2

& 4N2
J p(x, EYdx = = 8V E + 2A%E (

2A2+ E

)

E — 2A?

E +2A2

V(x) = 2A?cosh x



The quantization condition for this operator takes the following form:

2 ~1/h 1
p(x, EYdx + O(h*) + O™y =2zh [ n + >
B 4 3 NON- @QJZ,L

Perturbative corrections:
(all-order) WKB approach

|[Dunham]

Terminology: we refer to Lh.s. as quantum B period: [14(E, )



Interesting result:

partition function of

‘ od suitable four dimensional
quantum periods

Seiberg-Witten theory
in €2 background

|[Nekrasov-Shatashvili, Mironov-Morozoy, ...

Bethe/gauge correspondence



... Seiberg-Witten theory and the €2 background...



For modified Mathieu the relevant gauge theory is a supersymmetric

version of four dimensional Yang-Mills with gauge group G=SU(2)

(4dim /I = 2, SU(2) pure Seiberg-Witten theory in the £2 background)

Relevant parameters:

€1, €, ~ L2 background parameters
A ~ instanton counting parameter (~ gauge coupling)

E (or a) ~ parametrise moduli space of vacua



Two important results:

@ The exact partition function Z(a, A, €;, €,) was computed by Nekrasov

Notation: F' ~ logZ is the free energy

The Nekrasov-Shatashvili phase is defined by

€2=O



In our example, the explicit expression of the free energy reads:

Fla, A e)) = ) c,(a.e)A"

n>1
(a,€;) -
cila,e;) = —
e a’+ €7
Tei — 5a°
c(a, €)=

(a? + €7)(a? + 4e?)

Nekrasov free energy is exact in €’s and is a convergent series in A.

[Its et al, Bershtein et al, Felder et al, |



@ The physics of this type of gauge theories can be encoded geometrically in
the Seiberg-Witten curve. In our example the relevant geometry is

p?+2A%*coshx = E

For example:

e the genus of the curve gives the rank of the gauge group

o the classical periods Hﬁ%(E ) are related to the charges of (BPS)

particles in the gauge theory.



... Back to modified Mathieu...



Modified Mathieu:

HRZ, p) = p> + 2A’cosh & = p?+2A*coshx = E

This is the Seiberg-Witten

curve of 4 dim ./ = 2 SU(2)
SYM

Modified Mathieu is interpreted as the quantum SW curve of # = 2 SU(2) SYM

Moreover: h = ¢,



matching of classical curve

Kashani-Poor-Troost

Nekrasov-Rosly-Shatashvili Huang

Zenkevich AG-Gu-Marino

Mironov-Morozov [to-Shu

Codesido-Marino




Exact quantum periods & Nekrasov-Shatashvili
free energy

[,(E, A, h) F(a, A, h)

ML(E, A7) = =1 W _zh i e (1439 Zjoer (1229 +0 Fla, A, h)
s £ Xy = —10 T A - _ o T, — 10 - T a a, 1\,
B ) B\Az) T s T\ B 7 s 7

E = a’+ Ad,F(a, A\, h) (Matone relation)



Therefore the exact quantization condition reads

1
[1,(E, h) = 27h <n+5> n=012,...

7

Computed exactly by using Nekrasov-Shatashvili partition function.

(proven by Kozlowski and Teschner)

Notation: [, (E, h) = OFNS(E, h)



Partial summary

The geometric/gauge theoretic approach provides us with a new
analytic window on spectral theory.

Here we focused on quantization condition, however this approach can
also be used to compute eigenfunctions, Fredholm determinants, and
others objects in spectral theory.



In recent years many operators of interest in mathematical physics have
been successfully analysed in a similar way.

Next: apply these ideas to black hole perturbation theory and more precisely
to black hole quasinormal modes

[based on work in collaboration with G. Aminov and Y. Hatsuda]



... back to BH quasinormal modes...



The framework to compute BH quasinormal modes is called BH perturbation
theory.

Example:

Schwarzschild black hole: static and spherically symmetric solution to the
Einstein equation in the vacuum

1
R,ul/ — Eg””R =(

where g,, metric
R, Ricci tensor

R scalar curvature



Schwarzschild metric:

—1
2M 2M
ds® = g, dxtdx” = — (1 - —> dr* + <1 —~ —> dr* + r* (d0* + sin® 0d¢*)

r

r

r = oo : Minkowski flat spacetime

r = 2M: BH horizon

r = 0: BH singularity




What happen if we add a “small” perturbation to this solution?

8w =&+ 08,

A

Schwarzschild metric perturbation

[t was shown by Regge and Wheeler that (linear) perturbations of the
Schwarzschild metric can be encoded in a simple second order differential
equation.



To derive such equation, it is convenient to use the symmetries of the
background metric and decompose the perturbation as:

0 0 0 hy»
0 o 0 | ... 0
Sg = 1 e " W'sin@—Y., (0
s Z;' 0 0 0 0 00 r0(0)
ho(r) hy(r) 0 O )

where Y, ((0) ~ Py(cosf) are the spherical harmonics
T

Legendre polynomials



Then, substituting this into Einstein equations we obtain the Regge-
Wheeler equation:

r

d d 2 2M
f (i’)d—f (N—+w~—V(r)| &(r) =0, Jfr)=1—-———
r dr

where

2+ 1 6M
V(r)=f(r)< e+ )——>

2 r3

d
(@~ 702w () ~ [ @) )



The Regge-Wheeler equation is supplied by appropriate boundary conditions

r
tortoise coordinate: r* = 2 4+ 2M log <W - 1) =3 horizon @ r¥ - — o

V(r*)

@r* > — 00 /1N @ r* —> oo

() ~ e B(r¥) ~ el




These BC are satisfied only for a discrete (complex) set of the frequencies

{®, },>0 called quasinormal modes.

It is possible to compute BH quasinormal modes numerically.
|see Berti-Cardoso-Starinets (review)]

Example: £ = 2 and 2M=1 https://pages.jh.edu/~eberti2/ringdown/

w, = 0.7473... — i - 0.1779...
w, = 0.6934... — i - 0.5478...
w, = 0.6021... —i-0.9565...

Q: Is it possible to have a more analytic approach to QNMs?



We found that:

Regge-Wheeler Suitable quantum

equation ’ Seiberg-Witten

some algebra geometry

+ previous works
by Zenkevich,
[to et al, Fiziev
et al,

By following the geometric/ gauge theoretic approach to
spectral theory we can write an exact quantization
condition for BH quasinormal modes



The relevant gauge theory is a 4 dimensional supersymmetric version of SU(2) Yang-
Mills with matter (the N, = 3 Seiberg-Witten theory)

The precise dictionary is:

SYM with N, = 3 Schwarzwild BH
gauge coupling A —16iMw
1
parametrisation of vev E —0(0 4+ 1)+8M?w? — 1
flavour masses n, —2 —2iMw
—21Mw
3
\
h 1




|
aFNS(E, h, A, ml, mz, m3) — 27Z'h (n + E)
Nekrasov-Shatashvili free energy for the N, = 3 SW theory evaluated @

1
A=—-16iMo E=-7(+1)+8M? 2_1 h=1

my=2-2iMw, m,=-2-2iMw, my;=-2Mw

———— This agrees with numerical calculations of w,,



- The gauge theoretic approach to spectral theory can be
used to obtain new analytic results for QNMs of

Schwarzschild black hole

—% This approach can also be generalised to other BHs



So far we studied Schwarzschild and Kerr solutions which are

1. Asymptotically flat at infinity

2. Four dimensional

We found that their quasinormal modes frequencies are encoded in four
dimensional SU(2) SW theory with N, = 3.

What happens if we modify the conditions 1 and 2 ? does the connection with SW
theory still holds?

Some preliminary results indicated that this is the case. For instance
asymptotically (A)dS BH in 4d are mapped to 4d SU(2) with N, = 4.



Conclusion

The geometric/gauge theoretic approach to spectral theory
provides us with interesting non-perturbative tools which can
be used to obtain new exact analytic results.

This approach has found a wide range of applications, going form
integrable systems to black hole physics, which we just start to
explore.



Thank youl!






Kerr black hole: stationary and axially symmetric
solutions to the Einstein equation in the vacuum.

They are characterised by a mass

M and angular momentum a.

For the black hole horizon to exist:

a <M
/ "\

angular momentum mass

If &« = M the BH is called extremal.




The example of Kerr BH is technically more involved but the approach based on
SW theory works and it is even more interesting:

—% we obtained an analytic formula for the eigenvalues of
spheroidal harmonics.

—4 we could easily analyse the extremal limit. This limit
corresponds to the decoupling limit in SW theory where:

]Vf:3 — ]\9:2



The four-dimensional asymptotically flat solution in the Boyer-Lindquist coordinates is:
ds® = — dt?* 4+ dr? + 2acsin® 0drde + (1% + o cos? 6)d6* + (r* + o) sin? fd¢?
2Mr

. 9 2
-+ T o co2 0 (dt + dr + asin qub) ,
d d 2
%(1 -~ :1:2)% + (cx)* — 2csx 4+ Ay + 5 — (Wlb i iﬁ) sSim(x) =0,

T = cos 0



Dictionary for the (radial) Teukolsky equation:

SYM with N, = 3 Kerr BH
gauge coupling: A —16iw\/ M? — a?
> oo L
vev of scalar: E —Agp(@wa) =22 + 1)+ BM* — a”)o” — —
my 2 —2iMw
flavour masses:
m, —2 = 2iMw
i(=2M?w — am)
n3
: M2 — o2
AO\F NS(a, m;, \) —> Az, (@wa) : eigenvalues of spheroidal
a=£+1/2 harmonics.
A=aw :
_ No closed form expression was
m =m

my =my; =2 known.



