# Ergodicity & Thermalisation in Low Dimensional theories

Pranjal Nayak

[based on 1903.00478 (JHEP 10 019), 1907.10061
(JHEP 03 168)
with Julian Sonner and Manuel Vielma
and ongoing work]
with JS, MV and Alex Altland





Quantum Mechanics is unitary!

$$|\psi(t)\rangle = \mathcal{U}(t,t_0)|\psi(t_0)\rangle$$

How come we observe thermal physics?

Quantum Mechanics is unitary!

$$|\psi(t)\rangle = \mathcal{U}(t,t_0)|\psi(t_0)\rangle$$

How come we observe thermal physics?



Quantum Mechanics is unitary!

$$|\psi(t)\rangle = \mathcal{U}(t,t_0)|\psi(t_0)\rangle$$

How come we observe thermal physics?



How come we observe black hole formation?



Ergodic Hypothesis: Over long periods of time, the time spend by a system in some region of phase space of micro states with same energy is proportional to the volume of the region.

A classical many-body system efficiently explores the *available* phase space













 $\rho(t) = \sum_{i} p_{i} \left| \psi_{i}(t) \right\rangle \left\langle \psi_{i}(t) \right|$ 

How do we understand thermalisation in Quantum Mechanics???

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\rm mc}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

micro-canonical ensemble avg. energy of ensemble

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

micro-canonical entropy

[Srednicki '94]

#### Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

micro-canonical entropy

A generic excited state will then thermalise by dephasing

$$\langle \psi | \mathcal{O} | \psi \rangle = \sum_{i,j} c_i^* c_j e^{it(E_i - E_j)} \mathcal{O}_{ij} \longrightarrow \overline{O}\left(\bar{E}\right) + e^{-S}$$
 expectation value of non-extensive operator dephasing: spectral chaos on average thermal up to exponential in S







semi-classical General Relativity

#### ADS/CFT CORRESPONDENCE



#### ADS/CFT CORRESPONDENCE



 Evidence from earlier works suggests that one needs to wait for extremely long times before we receive corrections from some sub-leading saddle point solutions of quantum gravity which *prevents* information loss.



• Evidence from earlier works suggests that one needs to wait for extremely long times before we receive corrections from some sub-leading saddle point solutions of quantum gravity which *prevents* information loss.



[Maldacena '03; Anous, Hartman, Rovai, Sonner '16; Saad, Shenker, Stanford '19]

### Evolution to Thermal state

### Evolution to Thermal state

 Chaotic behaviour of the many-body systems facilitates their ergodic behaviour:



$$\frac{\delta q(t)}{\delta q(0)} \sim e^{\lambda t}, \qquad \lambda \text{ is the Lyapunov index}$$

### Evolution to Thermal state

 Chaotic behaviour of the many-body systems facilitates their ergodic behaviour:



 In quantum mechanics, one doesn't have the notion of trajectories.

The 'distance' between the states defined as an inner product between the states remains independent of time (unitarity)

$$\langle \psi(t) | \phi(t) \rangle = \langle \psi(0) | \phi(0) \rangle$$

 $<sup>^{\</sup>star}$   $\omega$  is the level spacing between eigenstates

Berry-Tabor/BGS conjecture:

[Berry-Taylor '77; Bohigas-Gioannoni-Schmidt '84]

 $<sup>^{\</sup>star}$   $\omega$  is the level spacing between eigenstates

• Berry-Tabor/BGS conjecture:

[Berry-Taylor '77; Bohigas-Gioannoni-Schmidt '84]

\* In Chaotic Quantum systems, spectral statistical properties are 'similar' to those of a Random Matrix Theory (RMT)

$$P^{n}[\omega] = A_{n}\omega^{n} \exp\left[-B_{n}\omega^{2}\right]$$



 $<sup>^{\</sup>star}$   $\omega$  is the level spacing between eigenstates

• Berry-Tabor/BGS conjecture:

[Berry-Taylor '77; Bohigas-Gioannoni-Schmidt '84]

\* In Chaotic Quantum systems, spectral statistical properties are 'similar' to those of a Random Matrix Theory (RMT)

$$P^n[\omega] = A_n \omega^n \exp\left[-B_n \omega^2\right]$$



 In Integrable Quantum systems, spectral statistical properties are described by Poisson Statistics

$$P^n[\omega] = \exp[-\omega]$$



• Berry-Tabor/BGS conjecture:

[Berry-Taylor '77; Bohigas-Gioannoni-Schmidt '84]

\* In Chaotic Quantum systems, spectral statistical properties are 'similar' to those of a Random Matrix Theory (RMT)



 In Integrable Quantum systems, spectral statistical properties are described by Poisson Statistics





 Level repulsion and Spectral Rigidity in energy eigenstates of RMT leads to a characteristic slope-ramp-plateau behavior of observables like Spectral Form factor and correlation functions in RMT.



 Level repulsion and Spectral Rigidity in energy eigenstates of RMT leads to a characteristic slope-ramp-plateau behavior of observables like Spectral Form factor and correlation functions in RMT.



 Ergodic limit is defined as the energy domain in which RMT statistics persists for a many-body (chaotic) system. Corresponding time is called t<sub>Thouless</sub>.

 Level repulsion and Spectral Rigidity in energy eigenstates of RMT leads to a characteristic slope-ramp-plateau behavior of observables like Spectral Form factor and correlation functions in RMT.



- Ergodic limit is defined as the energy domain in which RMT statistics persists for a many-body (chaotic) system. Corresponding time is called t<sub>Thouless</sub>.
- Most of these results have only been verified numerically for physical systems. An analytic microscopic understanding of Quantum Ergodicity in a strongly interacting system is lacking!

# Guantum Ergodicity

 Level repulsion and Spectral Rigidity in energy eigenstates of RMT leads to a characteristic slope-ramp-plateau behavior of observables like Spectral Form factor and correlation functions in RMT.



- Ergodic limit is defined as the energy domain in which RMT statistics persists for a many-body (chaotic) system. Corresponding time is called t<sub>Thouless</sub>.
- Most of these results have only been verified numerically for physical systems. An analytic microscopic understanding of Quantum Ergodicity in a strongly interacting system is lacking!

## 57K model: a new Guinea Pig

## 57K model: a new Guinea Pig



[Sachdev-Ye '93; Kitaev '15]

#### 57K model: a new Guinea Pig



[Sachdev-Ye '93; Kitaev '15]

- De a model of N Majorana fermions
- with all-to-all couplings
- de and quenched random couplings

#### SYK model: a new Guinea Pig



[Sachdev-Ye '93; Kitaev '15]

- De a model of N Majorana fermions
- with all-to-all couplings
- > and quenched random couplings

$$H = -\sum_{1 \le i_1 < i_2 < \dots < i_q \le N} J_{i_1 i_2 \dots i_q} \psi_{i_1} \psi_{i_2} \dots \psi_{i_q}$$

where, J is chosen from a Gaussian ensemble:

$$\langle J_{i_1 \cdots i_q} \rangle = 0$$
  $\langle J_{i \cdots i_q}^2 \rangle = \frac{(q-1)! J^2}{N^3}$ 

 The spectral statistics can be captured by computing the spectral resolvent,

$$R_2(\omega) \sim \left\langle \rho \left( E + \frac{\omega}{2} \right) \rho \left( E - \frac{\omega}{2} \right) \right\rangle_c \sim Re \left\langle G^+ \left( E + \frac{\omega}{2} \right) G^- \left( E - \frac{\omega}{2} \right) \right\rangle$$

 The spectral statistics can be captured by computing the spectral resolvent,

$$R_2(\omega) \sim \left\langle \rho \left( E + \frac{\omega}{2} \right) \rho \left( E - \frac{\omega}{2} \right) \right\rangle_c \sim Re \left\langle G^+ \left( E + \frac{\omega}{2} \right) G^- \left( E - \frac{\omega}{2} \right) \right\rangle$$

 This can be written in terms of a path integral using some auxiliary fields

$$\left\langle G^{+}\left(E + \frac{\omega}{2}\right) G^{-}\left(E + \frac{\omega}{2}\right) \right\rangle \sim \partial_{z_{2}} \partial_{z_{1}} \left\langle \frac{\det . (z_{3} - H) \det . (z_{4} - H)}{\det . (z_{1} - H) \det . (z_{2} - H)} \right\rangle_{z_{3} = z_{1}^{+} = E + \omega/2}$$

$$z_{4} = z_{7}^{-} = E - \omega/2$$

 The spectral statistics can be captured by computing the spectral resolvent,

$$R_2(\omega) \sim \left\langle \rho \left( E + \frac{\omega}{2} \right) \rho \left( E - \frac{\omega}{2} \right) \right\rangle_c \sim Re \left\langle G^+ \left( E + \frac{\omega}{2} \right) G^- \left( E - \frac{\omega}{2} \right) \right\rangle$$

 This can be written in terms of a path integral using some auxiliary fields

$$\left\langle G^{+}\left(E + \frac{\omega}{2}\right) G^{-}\left(E + \frac{\omega}{2}\right) \right\rangle \sim \partial_{z_{2}} \partial_{z_{1}} \left\langle \frac{\det . (z_{3} - H) \det . (z_{4} - H)}{\det . (z_{1} - H) \det . (z_{2} - H)} \right\rangle_{z_{3} = z_{1}^{+} = E + \omega/2}$$

$$z_{4} = z_{7}^{-} = E - \omega/2$$

 Universal RMT physics emerges due to causal symmetry breaking around the saddle point solutions.

[Altland Sonner '20]

Causal symmetry is broken spontaneously by the saddle point solutions

&

explicitly by  $\omega \neq 0$ 

 Universal RMT physics emerges due to causal symmetry breaking around the saddle point solutions.

Causal symmetry is broken spontaneously by the saddle point solutions

&

explicitly by  $\omega \neq 0$ 

 Universal RMT physics emerges due to causal symmetry breaking around the saddle point solutions.

Causal symmetry is broken spontaneously by the saddle point solutions

&

explicitly by  $\omega \neq 0$ 

An effective action can be written for these pseudo-Goldstone modes,

$$\left\langle \frac{\det . (z_3 - H) \det . (z_4 - H)}{\det . (z_1 - H) \det . (z_2 - H)} \right\rangle \sim \int \mathcal{D}Q e^{-S[Q]}$$

 Universal RMT physics emerges due to causal symmetry breaking around the saddle point solutions.

Causal symmetry is broken spontaneously by the saddle point solutions

&

explicitly by  $\omega \neq 0$ 

An effective action can be written for these pseudo-Goldstone modes,

[Altland, Bagrets '17; Altland, PN, Sonner, Vielma ongoing]

$$\left\langle \frac{\det . (z_3 - H) \det . (z_4 - H)}{\det . (z_1 - H) \det . (z_2 - H)} \right\rangle \sim \int \mathcal{D}Q e^{-S[Q]}$$

 The coset manifold for a specific system depends on the symmetries of the original Hamiltonian

For the case of time-reversal non-symmetric systems the coset manifold is  $U(2|2)/U(1|1) \times U(1|1)$  [Altland Zirr

[Altland Zirnbauer '97]

 Operator correlation functions in the ergodic limit show a similar behaviour [Altland, PN, Sonner, Vielma ongoing]

$$\begin{split} \tilde{R}(E,\omega) &= \sum_{\beta} |\langle \alpha \, | \, \mathcal{O} \, | \, \beta \rangle \, |^2 \, \delta \left( E_{\alpha} - E_{\beta} - \omega \right) \\ &\approx \mathrm{Tr}[\mathcal{O}] \mathrm{Tr} \left[ \mathcal{O}^{\dagger} \right] \pi \, \delta(x) + \mathrm{Tr} \left[ \mathcal{O} \mathcal{O}^{\dagger} \right] \left( 2\pi \delta(x) - \frac{\sin^2(x)}{x^2} \right) \end{split}$$

 Operator correlation functions in the ergodic limit show a similar behaviour [Altland, PN, Sonner, Vielma ongoing]

$$\tilde{R}(E,\omega) = \sum_{\beta} |\langle \alpha | \mathcal{O} | \beta \rangle|^2 \, \delta \left( E_{\alpha} - E_{\beta} - \omega \right)$$
 related to the Fourier transform of the Thermal 2-point function, 
$$\approx \text{Tr}[\mathcal{O}] \text{Tr} \left[ \mathcal{O}^{\dagger} \right] \pi \, \delta(x) + \text{Tr} \left[ \mathcal{O} \mathcal{O}^{\dagger} \right] \left( 2\pi \delta(x) - \frac{\sin^2(x)}{x^2} \right)$$

Tr  $\left[e^{-\beta H} \mathcal{O}^{\dagger}(t) \mathcal{O}\right]$ 

 Operator correlation functions in the ergodic limit show a similar behaviour [Altland, PN, Sonner, Vielma ongoing]

$$\tilde{R}(E,\omega) = \sum_{\beta} |\langle \alpha | \mathcal{O} | \beta \rangle|^2 \, \delta \left( E_{\alpha} - E_{\beta} - \omega \right)$$
 related to the Fourier transform of the Thermal 2-point function,

Tr  $\left[e^{-\beta H} \mathcal{O}^{\dagger}(t) \mathcal{O}\right]$ 

 Operator correlation functions in the ergodic limit show a similar behaviour [Altland, PN, Sonner, Vielma ongoing]



 We also study the contribution of the non-universal "Thouless modes" to the above operator correlation function.

#### Thermalisation in Pure states?

#### Thermalization in different pure states of the SYK model

| state                          | 2D picture | class      | ETH | $\lambda$         |
|--------------------------------|------------|------------|-----|-------------------|
| $ E(k)\rangle$                 | ZZ         | parabolic  |     | $2\pi T_{ m ETH}$ |
| $ E_{r^-}\rangle$              | FZZT       | elliptic   |     | $2\pi T_{ m ETH}$ |
| $ E_{r^+}\rangle$              | FZZT       | hyperbolic | X   | $\in i\mathbb{R}$ |
| $\mathcal{O}_{\ell_H} 0 angle$ | ZZ         | parabolic  |     |                   |

#### Thermalisation in Pure states?

#### Thermalization in different pure states of the SYK model

| state                           | 2D picture | class      | ETH | $\lambda$         |
|---------------------------------|------------|------------|-----|-------------------|
| $ E(k)\rangle$                  | ZZ         | parabolic  |     | $2\pi T_{ m ETH}$ |
| $ E_{r^-}\rangle$               | FZZT       | elliptic   |     | $2\pi T_{ m ETH}$ |
| $ E_{r^+}\rangle$               | FZZT       | hyperbolic | X   | $\in i\mathbb{R}$ |
| $\mathcal{O}_{\ell_H} 0\rangle$ | ZZ         | parabolic  |     |                   |

[PN, Sonner, Vielma 1903.00478; 1907.10061]

# Summary

- We have developed a microscopic understanding of the emergence of thermal behaviour in a physical quantum mechanical system, the SYK model.
- We did this by explicitly deriving the RMT-like spectral statistics in this system.
- We also demonstrate that certain pure states behave close to thermal states in this system thereby explaining emergence of thermal behaviour in this system.

#### TO DO

 Develop a holographic understanding to improve our understanding of quantum gravity.

# Summary

- We have developed a microscopic understanding of the emergence of thermal behaviour in a physical quantum mechanical system, the SYK model.
- We did this by explicitly deriving the RMT-like spectral statistics in this system.
- We also demonstrate that certain pure states behave close to thermal states in this system thereby explaining emergence of thermal behaviour in this system.

#### TO DO

 Develop a holographic understanding to improve our understanding of quantum gravity.

## More Creneral ETH

#### More Creneral ETH

• <u>E</u> T H

In terms of an arbitrary correlation function,

$$\langle m \, | \, \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k \, | \, n \rangle \sim \langle \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k \rangle_{mc} \, \delta_{mn} \, + \, e^{O\left(-S(\bar{E})/2\right)}$$

$$\langle m \mid OTOC \mid m \rangle \sim 1 - \frac{\#}{C} e^{\lambda_L t}$$
, where,  $\lambda_L \sim \frac{2\pi}{\beta(\bar{E})}$ 
[Sonner, Vielma '17]

#### More Creneral ETH

• <u>E</u> T H

In terms of an arbitrary correlation function,

$$\langle m | \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k | n \rangle \sim \langle \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k \rangle_{mc} \delta_{mn} + e^{O(-S(\bar{E})/2)}$$

$$\langle m \mid OTOC \mid m \rangle \sim 1 - \frac{\#}{C} e^{\lambda_L t}$$
, where,  $\lambda_L \sim \frac{2\pi}{\beta(\bar{E})}$ 
[Sonner, Vielma '17]

• In a Conformal field theory, we have state-operator correspondence,  $|m\rangle \leftrightarrow \mathcal{O}_m$  [Dymarsky, Lashkari, Liu '16, '17]

In such a case,

$$\langle m \, | \, \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k \, | \, n \rangle \leftrightarrow \langle \mathcal{O}_m \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k \mathcal{O}_n \rangle \sim \langle \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k \rangle_{mc} \, + \, e^{O\left(-S(\bar{E})/2\right)}$$

in particular for the 3-point function:  $c_{mkn} = f_k(\overline{E})\delta_{mn} + \mathcal{O}\left[e^{-S(\overline{E})/2}\right]$ 

# Schwarzian in SYK

[Kitaev '15; Maldacena, Stanford '16]

## Schwarzian in SYK

[Kitaev '15; Maldacena, Stanford '16]

At low-energy there is an emergent conformal symmetry, that is broken spontaneously as well as explicitly... Leading soft-mode physics



## schwarzian in syk

[Kitaev '15; Maldacena, Stanford '16]

At low-energy there is an emergent conformal symmetry, that is broken spontaneously as well as explicitly... Leading soft-mode physics



▶ Effective action on the 'reparametrization modes'

$$\int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp\left[-\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right]$$
where,  $\left\{ f(\tau), \tau \right\} = \frac{f'''(\tau)}{f'(\tau)} - \frac{3}{2} \left(\frac{f''(\tau)}{f'(\tau)}\right)^2$ 

$$g^2 \sim \frac{\beta J}{N}$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]



discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$



[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$



Limit of conformal six-pt functions OPE coeffs.

ETH

## Spectram

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

**2D BH** 

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

Using `duality' between 2D Liouville and Schwarzian theory

**ETH** 

Limit of conformal six-pt functions OPE coeffs.

ETH

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

Using `duality' between 2D Liouville and Schwarzian theory

**ETH** 

Limit of conformal six-pt functions OPE coeffs.

**ETH** 

[PN, Julian Sonner & Manuel Vielma]

**2D BH** 

# The Schwarzian Eheory

# The Schwarzian Cheory

 For large but finite values of SYK coupling J, the conformal symmetry is explicitly broken



# The Schwarzian Checry

 For large but finite values of SYK coupling J, the conformal symmetry is explicitly broken



•  $f(\tau)$  are the pseudo-Goldstone modes

The leading contribution to the physical observables is due to exchange of these modes

$$\left\langle \cdot \right\rangle = \int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp \left[ -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right] \left( \cdot \right)$$

• Liouville theory on an open string,



$$\mathcal{H} = \frac{1}{16\pi b^2} \left[ \pi_{\varphi}^2 + \partial_{\sigma} \varphi^2 + 2e^{\varphi} - \varphi_{\sigma\sigma} \right]$$

$$c = 1 + 6\left(\frac{1}{b} + b\right)^2$$

Liouville theory on an open string,



Different boundary conditions consistent with the Conformal symmetry:

[Mertens Turiaci Verlinde '17; Lam Mertens Turiaci Verlinde '18]

· Liouville theory on an open string,



$$\mathcal{H} = \frac{1}{16\pi b^2} \left[ \pi_{\varphi}^2 + \partial_{\sigma} \varphi^2 + 2e^{\varphi} - \varphi_{\sigma\sigma} \right]$$
$$c = 1 + 6\left(\frac{1}{b} + b\right)^2$$

Different boundary conditions consistent with the Conformal symmetry:

[PN Sonner Vielma '19]

**Dirichlet:** 

**Neumann:** 

$$\varphi = \infty$$

or, 
$$\partial_{\sigma} \varphi = - \, r e^{\, arphi/2}$$

on the boundaries

• Action with the boundary term:

$$\int \mathcal{D}\varphi \mathcal{D}\pi e^{\int d\tau d\sigma \left[\frac{\pi\dot{\varphi}}{8\pi b^2} - \mathcal{H}\right] + S_{bdy}}$$

$$S_{bdy} = -\frac{r}{4\pi b^2} \int d\tau \ e^{\frac{1}{2}\varphi}$$

• With a judicial choice of field variables along with the classical limit,  $b \rightarrow 0 \Rightarrow$ 

$$S_{\text{Liou}} \rightarrow C \int_{\beta/2}^{\beta/2} d\sigma \left[ \{ f(\sigma), \sigma \} + \frac{2\pi^2 \theta^2}{\beta^2} f'(\sigma)^2 \right] - \frac{4\pi C}{\beta} \frac{f'(\beta/2)}{\tan(\pi \theta)}$$

$$C = \frac{a}{4\pi b^2}$$
 size of the temporal direction 
$$r = \sqrt{2}\cos(\pi\theta)$$

Dirichlet-Dirichlet:

$$\int \frac{\mathcal{D}f}{\mathrm{SL}(2,\mathbb{R})} \exp \left[ C \int_{-\beta/2}^{\beta/2} d\sigma \left( \{ f(\sigma), \sigma \} + \frac{2\pi}{\beta^2} f'(\sigma)^2 \right) \right]$$



Dirichlet-Neumann:

$$\int \frac{\mathcal{D}f}{\mathrm{U}(1)} \exp \left[ C \int_{-\beta/2}^{\beta/2} d\sigma \left( \{ f(\sigma), \sigma \} + \frac{2\pi\theta^2}{\beta^2} f'(\sigma)^2 \right) - \frac{4\pi C}{\beta \tan(\pi\theta)} f'\left(\frac{\beta}{2}\right) \right]$$



Moreover, the vertex operators in the Liouville theory reduce to bilocal operators in the Schwarzian theory:

$$e^{2\ell\varphi(z,\bar{z})} \to \left[\frac{f'(\sigma)f'(-\sigma)}{\sin^2\left(\frac{\pi\theta}{\beta}(f(\sigma)-f(-\sigma))\right)}\right]^{2\ell} =: \mathbb{O}_{\ell}(\sigma,-\sigma)$$

$$\int \frac{\mathcal{D}f}{G} \exp \left[ C \int_{-\beta/2}^{\beta/2} d\sigma \left( \{ f(\sigma), \sigma \} + \frac{2\pi\theta^2}{\beta^2} f'(\sigma)^2 \right) \right] \left( \frac{f'(\sigma_1)f'(-\sigma_1)}{\sin^2 \left( \frac{\pi\theta}{\beta} (f(\sigma_1) - f(-\sigma_1)) \right)} \right)^{2\ell_1} \dots$$

$$\frac{a}{5}$$

$$\frac{\beta}{2}$$

$$\langle s | = \int \! dP \; \Psi_s(P) \; \langle \langle P |$$
 Ishibashi states:  $\langle \langle P | = \langle \nu_P | \left( 1 + \frac{L_1 \bar{L}_1}{\Delta_P} + \ldots \right), \qquad | \nu_P \rangle = e^{\frac{1}{4b}(\frac{Q}{2} + iP)\varphi}$