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What is ocur work abouk?

Quantum Mechanics is unitary!

P(t)) = U(t, to)|Y(to))

|
How come we observe |
thermal physics? |

ADS/CFT

How come we observe |
black hole formation? )'
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Ergodia ijaﬁhesis: Over long periods of time, the time spend by a
system in some region of phase space of micro states with same energy
is proportional to the volume of the region.

A classical many-body system efficiently explores the available phase

space
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How do we understand bhermalisakion i
Quanktum Mechawnics???
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Quantum thermalization: Eigenstate Thermalisation Hypothesis
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Quantum thermalization: Eigenstate Thermalisation Hypothesis
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Quanktum Thermalizatiown

[Srednicki '94]

—S(E)/2

| (miO) = One(Bhon + PP IE ) o

micro—~canonical em&ropj

A generic excited state will then thermalise by dephasing
t E —F
WIO) = Y ey P 0y — O (E

v

dephasing: on average thermal
spectral chaos up to exponential in S

expectation value
of non-extensive operator
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What does ik have to do with RBlack Holes?

ADS/CFT CORRESPONDENCE

d+1

dimensional | d dimensional
theory of | | conformal field |
gravity |
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ADS/CFT CORRESPONDENCE
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What does ik have to do with RBlack Holes?

e Evidence from earlier works suggests that one
needs to wait for extremely long times before we
receive corrections from some sub-leading saddle
point solutions of quantum gravity which prevents
information loss.




What does ik have to do with RBlack Holes?

e Evidence from earlier works suggests that one
needs to wait for extremely long times before we
receive corrections from some sub-leading saddle
point solutions of quantum gravity which prevents

information loss.
[Maldacena '03;

Anous, Hartman, Rovai, Sonner '16;
Saad, Shenker, Stanford '19]
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Evolution to Thermal state

e Chaotic behaviour of the many-body systems facilitates
their ergodic behaviour:

90 i Jisthe Lyapunov index
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Evolubion to Thermal skake

e Chaotic behaviour of the many-body systems facilitates
their ergodic behaviour:

90 i Jisthe Lyapunov index
0q(0)

>

A

e In quantum mechanics, one doesn’t have the notion of
trajectories.

The ‘distance’ between the states defined as an inner
product between the states remains independent of time
(unitarity)

(w(®|®) = (w(0)]| ¢(0))

10






e Berry-Tabor/BGS conjecture: [Berry-Taylor 77; |
Bohigas-Gioannoni-Schmidt '84]

* w is the level spacing between eigenstates 11
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[Berry-Taylor '77;
Bohigas-Gioannoni-Schmidt '84]

e Berry-Tabor/BGS conjecture:

+ In Chaotic Quantum systems, spectral statistical properties are

‘similar’ to those of a Random Matrix Theory (RMT)

P'w] = A, " exp |-B,0?|

* w is the level spacing between eigenstates
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e Berry-Tabor/BGS conjecture: [Berry-Taylor 77; |
Bohigas-Gioannoni-Schmidt '84]

+ In Chaotic Quantum systems, spectral statistical properties are
‘similar’ to those of a Random Matrix Theory (RMT)
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+ In Integrable Quantum systems, spectral statistical properties
are described by Poisson Statistics
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[Berry-Taylor '77;
Bohigas-Gioannoni-Schmidt '84]

e Berry-Tabor/BGS conjecture:

+ In Chaotic Quantum systems, spectral statistical properties are
‘similar’ to those of a Random Matrix Theory (RMT)

P'w] = A, " exp |-B,0?|

'Level repulsion|
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+ In Integrable Quantum systems, spectral statistical properties
are described by Poisson Statistics

P"[w] = exp[~a]

* w is the level spacing between eigenstates
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e [evel repulsion and Spectral Rigidity in energy eigenstates of RMT
leads to a characteristic slope-ramp-plateau behavior of observables
like Spectral Form factor and correlation functions in RMT.

Observables

tThouIess
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tThouIess !

e Ergodic limit is defined as the energy domain in which RMT
statistics persists for a many-body (chaotic) system. Corresponding
time is called trhouless.
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Observables

tThouIess !

e Ergodic limit is defined as the energy domain in which RMT
statistics persists for a many-body (chaotic) system. Corresponding
time is called trhouless.

e Most of these results have only been verified numerically for
physical systems. An analytic microscopic understanding of
Quantum Ergodicity in a strongly interacting system is lacking!
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e [evel repulsion and Spectral Rigidity in energy eigenstates of RMT
leads to a characteristic slope-ramp-plateau behavior of observables
like Spectral Form factor and correlation functions in RMT.

Observables

tThouIess !

e Ergodic limit is defined as the energy domain in which RMT
statistics persists for a many-body (chaotic) system. Corresponding
time is called trhouless.

e Most of these results have only been verified numerically for
physical systems. An analytic microscopic understanding of

Quantum Ergodicity in a strongly interacting system j4& lacking!
WS
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Kitaev "15]
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SYK model: a new Guinea Pig

[Sachdev-Ye 93;
Kitaev "15]

J7,9,10,11
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> a model of N Majorana fermions
b wikth all-=to-all cou,pi.imss
> aind qu&mcked random t:oupi.i,sf\g)s
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SYK model: a new Guinea Pig

[Sachdev-Ye '93; > a model of N Majorana fermions
Kitaev "15] > with all-to-all couplings
> and quenched random couplings

|
| H = - Z Jiliz---iq Vi, ¥,

| 1S11<12<”'<quN
where, J is chosen from a Gaussian ensemble: l
(

|
“ (g—1)!J°
J Y=0 2y
' < ll“'lq> <Ji---iq> N3
. e ——
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Universality of Quantum Ergodicity

e The spectral statistics can be captured by computing the spectral
resolvent,

o~ (o (£45)o (6-5)) <o (m+5) o (2-3))
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Universality of Quantum Ergodicity

e The spectral statistics can be captured by computing the spectral
resolvent,

o~ (o (£45)o (6-5)) <o (m+5) o (2-3))

e This can be written in terms of a path integral using some
auxiliary fields

<G+ <E+—> G (E+—)> ~ 0,0,
2 2 2 det.(zl—H) det.(Zz—H) =z =E+w/2

=% =EFE—-wl/2
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Universality of Quantum Ergadia&&v

e The spectral statistics can be captured by computing the spectral
resolvent,

Ryfw) ~ <,0 <E+%)p (E—%>>C~R6<G+ (E+%> - (E_%»

e This can be written in terms of a path integral using some
auxiliary fields

<G+<E+—)G <E+—>>~azaz
2 2 >\ det.(z;—H) det.(z—H) [ s=ct =E+ P

=% =EFE—-wl/2

e Universal RMT physics emerges due to causal symmetry breaking
around the saddle point solutions. [Altland Sonner "20]

Causal symmetry is broken spontaneously by the saddle point
solutions

&

explicitly by @ #0
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around the saddle point solutions.

Causal symmetry is broken spontaneously by the saddle point

solutions
&
explicitly by @ # 0

e An effective action can be written for these pseudo-Goldstone modes,

<det. (23 —H) det. (Z4 —H> > N [@Qe‘S[Q]

det. <Z1 —H) det. (Zz — H)

15



Universality of Quantum Ergodicity

Universal RMT physics emerges due to causal symmetry breaking
around the saddle point solutions.

Causal symmetry is broken spontaneously by the saddle point
solutions

&
explicitly by @ # 0

An effective action can be written for these pseudo-Goldstone modes,
[Altland, Bagrets '17; Altland, PN, Sonner, Vielma ongoing]

<det. (z3 —H) det. (Z4 —H) > N [@Qe—S[Q]

det. <Z1 —H) det. (Zz — H)

The coset manifold for a specific system depends on the symmetries

of the original Hamiltonian

For the case of time-reversal non-symmetric systems the coset

manifold is U2 |2)/U(1|1)x U(1]|1) [Altland Zirnbauer '97]
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Operators in Erqodic Limit

e Operator correlation functions in the ergodic limit
show a similar behaviour [Altland, PN, Sonner, Vielma ongoing]

RE w) =Y (alO1p) 1 6 (E,~ By~ o)
p

x2

. 2
~ Tr[O]Tr [61] 76(x) + Tr [06] (27z5(x) _ 2 (x)>
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e Operator correlation functions in the ergodic limit
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Operators in Erqodic Limit

e Operator correlation functions in the ergodic limit

show a similar behaviour

p

/, RE@ =Y alO1p)* 6 (E,~ Ey— o)

' related to the Fourier

transform of the

Thermal Z“F'OEAAE
function,

Tr [e 7?7 67(1) 0|

~ Tr[O]Tr |67] 7 6(x) + Tr |66 <27t5(x) —

sin? (x)
+2

[Altland, PN, Sonner, Vielma ongoing]

-

tramp

e We also study the contribution of the non-universal
“"Thouless modes” to the above operator correlation

function.
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Thermalisation it Pure states?

Thermalization in different pure states of the SYK model

state 2D picture class ETH A
E(k)) 77 parabolic v 2mlETH
E,-) F77T elliptic V' | 21Terw
B+ ) FZZT hyperbolic X c iR
Oy, 0) 77 parabolic v —
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Thermalisation it Pure states?

Thermalization in different pure states of the SYK model

state 2D picture class ETH A
E(k)) 77 parabolic v 2mlETH
E,-) F77T elliptic V' | 21Terw
B+ ) FZZT hyperbolic X c iR
Oy, 0) 77 parabolic v —

[PN, Sonner, Vielma 1903.00478;
1907.10061]
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+ We have developed a microscopic understanding of the
emergence of thermal behaviour in a physical quantum
mechanical system, the SYK model.

+ We did this by explicitly deriving the RMT-like spectral
statistics in this system.

+ We also demonstrate that certain pure states behave
close to thermal states in this system thereby explaining
emergence of thermal behaviour in this system.

TO DO

e Develop a holographic understanding to improve our
understanding of quantum gravity.
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More Crehneral ETH

o [ T H

In terms of an arbitrary correlation function,
(m| 0,050, |n) ~ {(O,0,--0,) 4 eO(=S(B)2)

mc 5mn

# 2
(m|OTOC |m) ~ 1 — —e™, where, 1, ~ —7_T
C PE

[Sonner, Vielma "17]
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More Greneral ETH

o [ T H

In terms of an arbitrary correlation function,
(m|6,0,--06,|n) ~{(0,0,--0,), .5 + =SB/

# 27
(m|OTOC|m) ~1 ——e*!,  where, |, ~ ——
C P(E
[Sonner, Vielma '17]
e In a Conformal field theory, we have state-operator
correspondence, |m) < 0,, [Dymarsky, Lashkari, Liu
'16, '17]

In such a case,
(m|0,0,-+-0,|n) < {0, 0,0,+-0,0,) ~{0,0,---0,), . + o O(—S(E)/2)

in particular for the 3-point function: Cmkn = fi(E)dmn + O [e—S(E)/z]

19



Schwarzian ua SYK

[Kitaev “15; Maldacena, Stanford '16]



Schwarzian ua SYK

[Kitaev “15; Maldacena, Stanford '16]

» At low-energy there is an emergent conformal
symmetry, that is broken spontaneously as well as
explicitly... Leading soft-mode physics

Go(f(m1), £(72)) = [f (1) £/ (2)] "9 Go(m1,72)
Golf]

sgn(t — ) Qg

Go(r, 72) ~ |71 — To|2/4

GOI
(1/) # 0)

|

)
If

] SChwsarzian action

- ——— -
0

Gf)(f(ﬁ)af(ﬁ)) - [f'(Tl)f/(Tz)]_l/qGo(ﬁ,Tz) (1 - q_ e
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Schwarzian ua SYK

[Kitaev “15; Maldacena, Stanford '16]

» At low-energy there is an emergent conformal
symmetry, that is broken spontaneously as well as
explicitly... Leading soft-mode physics

Go(f(m1), £(72)) = [f (1) £/ (2)] "9 Go(m1,72)
Golf]

sgn(t — ) Qg

Go(r, 72) ~ |71 — To|2/4

|

)
If

i a e Schwarzian action
G6(f(7'1), f(T2)) = [f,(Tl)f,(TQ)] qG0(7'1=7'2) (1 — qu m + - - . — ——————

- ——— -
0

» Effective action on the ‘reparametrization modes’

(@) 1
J SH_(Z,R) cXp [—? JdT {f(T), T}]
87

fm(T) - i <f”('l') >2 g2 ~ W
J@ 2 \f(

where, {f(T),T} =

20



Spectrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]
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Spectrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]

PE——————

discrete tower of states

a2n+ 1

O, ~ W;

h,=2n+1+¢,
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Spectrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]

7 —

ﬂ' continuum: Schwarzian discrete tower of states |
L[
_ | " 2n+1
S = 2 dr {f(v), 7} O, ~ y; 0"y

h,=2n+1+¢,
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Spectrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]

. continuum: Schwarzian ~ discrete tower of states

.i

S=—-——|dr {f(T)a T} @Ifl ~ l//l azn—l_ll/fl

h,=2n+1+e¢,
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Spectrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]

. continuum: Schwarzian ~ discrete tower of states

.i

S=—-——1dr {f(T)a T} @Ifl ~ l//l azn—l_ll/fl

h,=2n+1+e¢,

Limit of conformal
Six-pt functions
OPE coeffs.

'\q

| ETHI
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Spectrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]

. continuum: Schwarzian discrete tower of states |
1 r | | |
S = © dr {f(7), 7} O, ~ . "y

h,=2n+1+¢,

Using "duality’ Limit of conformal

be;WSeeQ 2D LiOU¥j|'e six-pt functions
and Schwarzian theory . OPE coeffs.
ETH :]/ \l ETH |
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Sp eckrum

[Kitaev '15; Polchinski, Rosenhaus 15; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16;
Gross, Rgsenhaus "17]

| continuum: Schwarzian  discrete tower of states |

L — "dT {f(,z.), T} @n ~ aZn-l—ll/jl

h=2n+1+¢,

Using "duality’ Limit of conformal

be;WSeeQ 2D LiOU¥j|'e six-pt functions
and Schwarzian theory . OPE coeffs.
ETH :]/ \l ETH |

[PN, Julian Sonner & Manuel Vielma] >
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The Schwarzian theore

e For large but finite values of SYK coupling J, the

conformal symmetry is explicitly broken
G,l[f]
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The Schwarzian theore

e For large but finite values of SYK coupling J, the
conformal symmetry is explicitly broken

Golf]

fo) !
J S[L(g,u@ P [_?J 4 i@, T}]

_+Schwarzian action | ,  PJ
B — e —_—— N

e f(r)are the pseudo-Goldstone modes

The leading contribution to the physical
observables is due to exchange of these modes

() = J Sui(;)u%) oF [_é[ e if (T)’T}] (*)

22



Schwarzian theory from Liouville

theoru
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Schwarzian theory from Liouville

theory

e Liouville theory on an open string,

|
2 2 Ve?
TT H = 7 > [71994‘ (3060 + Ze q”aa]

N [

o

I

[G—

+

@)
N
S| —

+

S
N~
(\)

23



Schwarzian theory from Liouville

theory

e Liouville theory on an open string,

IT = : [ﬂ2+(3q02+264"—q0]
l6zb2 LY °° e
| 2
C=1+6<Z+b>
c=0 azé
2

e Different boundary conditions consistent with the Conformal symmetry:
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Schwarzian theory from Liouville

theory

[Mertens Turiaci Verlinde '17; Lam Mertens Turiaci Verlinde "18]

e Liouville theory on an open string,

|
4 A = [ﬂ2+0 24 2e? — ]
T 16ab2 L 7 o¥ Voo
1 2
C=1+6<Z+b>
c=0 azé
2

e Different boundary conditions consistent with the Conformal symmetry:
[PN Sonner Vielma "19]

Dirichlet: P =0 _
Neumann: lor, 9 ¢ = — re?? on the boundaries
) O -
e Action with the boundary term:
[940@7:6 Idfdal%z B %]+dey

r 1
= — 29
dey Abh?2 [dT ¢ 23



Licuville -» Schwarziawn

e With a judicial choice of field variables along with the
classical limit, » - 0 >

b2 . i}

2n°0%* | 4nC f(pI2)

Stiow — C [da {f(0),0} + 5 fo)| — 5 tan(0)
b2 - -

}— size of the temporal direction

r = \/5 cos(z0)
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Licuville -» Schwarziawn

* Dirichlet-Dirichlet:

@f E 10 \2
[<2 e |c [ ao( 0101+ 2 1007)
L _ﬂ/z —

® Dirichlet-Neumann:

o _
9f 2n0* _ 4aC (ﬁ)
JU(I) exp | C J da<{f(a),a}+ VE f(a)) ,Btan(n@)f >

-2
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Licuville -» Schwarziawn

Moreover, the vertex operators in the Liouville theory

reduce to bilocal operators in the chgvarzian theory:

. f@f (=)
sin? (2(f(o) - f=0)

=: O ,(c, — o)
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Licuville -» Schwarziawn

2 / 7
[Zew|c | do <{f(a), o)+ f’(a)2> o o)
I —BI2 ﬂ \Sinz <ﬂ7(f(01) _f(_al))> )

(51 = | apwp) (2

Q
: J
o
\
b
2

L.L
Ishibashi states: ((P| = (vp| <1 +

Ve

ey AT Ll L LTI
-
4444
.,
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